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Crime rates per capita are used virtually everywhere to rank and compare cities. How-

ever, they rely on a strong linear assumption that crime increases at the same pace as the

number of people in a region. Here we show that using per capita rates to rank cities can

produce substantially different rankings from rankings adjusted for population size. We

analyze the population–crime relationship in cities across twelve countries and assess

the impact of per capita measurements on crime analyses, depending on offense type. In

most countries, we find that theft increases superlinearly with population size, whereas

burglary increases linearly. Our results reveal that per capita rankings can differ from

population-adjusted rankings in such a way that they disagree about half of the cities in

the top ten most dangerous cities. We advise caution when using crime rates per capita

to rank cities and recommend evaluating the linear plausibility before analyzing crime

rates.
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Introduction7

In criminology, it is a generally accepted fact that crime occurs more often in more populated re-8

gions. In one of the first works of modern criminology, Balbi and Guerry examined the crime distri-9

bution across France in 1825, revealing that some areas experienced more crime than others (Balbi10

and Guerry 1829; Friendly 2007). To compare these areas, they realized the need to adjust for popu-11

lation size and analyzed crime rates instead of raw numbers. This method removes the linear effect12

of population size from crime numbers, and it has been used to measure crime and compare cities13

almost everywhere—from academia to news outlets (Hall 2016; Park and Katz 2016; Siegel 2011).14

However, this approach neglects potential nonlinear effects of population and, more importantly,15

exposes our limited understanding of the population–crime relationship.16

Though different criminology theories expect a relationship between population size and crime,17

they tend to disagree on how crime increases with population (Chamlin and Cochran 2004; Rotolo18
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and Tittle 2006). These theories predict divergent population effects, such as linear and superlinear19

crime growth. Despite these theoretical disputes, however, crime rates per capita are broadly used20

by assuming that crime increases linearly with the number of people in a region. Crucially, crime21

rates are often deemed to be a standard way to compare crime in cities.22

However, the widespread adoption of crime rates is arguably due more to tradition rather than23

its ability to remove the effects of population size (Boivin 2013). Many urban indicators, including24

crime, have already been shown to increase nonlinearly with population size (Bettencourt et al.25

2007). When we violate the linear assumption and use rates, we deal with quantities that still have26

population effects, which introduces an artifactual bias into rankings and analyses.27

Despite this inadequacy, we only have a limited understanding of the impact of nonlinearity on28

crime rates. The literature has mostly paid attention to estimating the relationship between crime29

and population size, focusing on either specific countries or crime types. The lack of comprehensive30

systematic studies has limited our knowledge regarding the impact of the linear assumption on crime31

analyses and, more critically, has prevented us from better understanding the effect of population32

on crime.33

In this work, we analyze burglaries and thefts in twelve countries and investigate how crime rates34

per capita can misrepresent cities in rankings. Instead of assuming that the population–crime rela-35

tionship is linear, we estimate this relationship from data using probabilistic scaling analysis (Leitão36

et al. 2016). We use our estimates to rank cities while adjusting for population size, and then we ex-37

amine how these rankings differ from rankings based on rates per capita. In our results, we find that38

the linear assumption is unjustified. We show that using crime rates to rank cities can lead to rank-39

ings that considerably differ from rankings adjusted for population size. Finally, our results reveal40

contrasting growths of burglaries and thefts with population size, implying that different crime dy-41

namics can produce distinct features at the city level. Our work sheds light on the population–crime42

relationship and suggests caution in using crime rates per capita.43

Crime and population size44

Different theoretical perspectives predict the emergence of a relationship between population size45

and crime. Three main criminology theories expect this relationship: structural, social control, and46

sub-cultural (Chamlin and Cochran 2004; Rotolo and Tittle 2006). In general, these perspectives47

agree that variations in the number of people in a region have an impact on the way people interact48

with each other. These theories, however, differ in the type of changes in social interaction and how49

they can produce a population–crime relationship.50

From a structural perspective, a higher number of people increases the chances of social interac-51

tion, which increases the occurrence of crime. Two distinct rationales can explain such an increase.52

Mayhew and Levinger (1976) posit that crime is a product of human contact: more interaction53

leads to higher chances of individuals being exploited, offended, or harmed. They claim that a54

larger population size increases the opportunities for interaction at an increasing rate, which would55
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lead to a superlinear crime growth with population size (Chamlin and Cochran 2004). In contrast,56

Blau (1977) implies a linear population–crime relationship. He posits that population aggregation57

reduces spatial distance among individuals which promotes different social associations such as58

victimization. At the same time that conflictive association increases, other integrative ones also59

increase, leading to a linear growth of crime (Chamlin and Cochran 2004). Notably, the structural60

perspective focuses on the quantitative consequences of population growth.61

The social control perspective advocates that changes in population size have a qualitative im-62

pact on social relations, which weakens informal social control mechanisms that inhibit crime (Groff63

2015). From this perspective, crime relates to two aspect of population: size and stability. Larger64

population size leads to higher population density and heterogeneity—not only individuals have65

more opportunities for social contacts, but they are often surrounded by strangers (Wirth 1938). This66

situation makes social integration more difficult and promotes a higher anonymity, which encour-67

ages criminal impulses and harms community’s ability to socially constrain misbehavior (Freuden-68

burg 1986; Sampson 1986). Similarly, from a systemic viewpoint, any change (i.e., increase or69

decrease) in population size can have an impact on crime numbers (Rotolo and Tittle 2006). This70

viewpoint understands that regular and sustained social interactions produce community networks71

with effective mechanisms of social control (Bursik and Webb 1982). Population instability, how-72

ever, hinders the construction of such networks. In communities with unstable population size,73

residents avoid socially investing in their neighborhoods, which hurts community organization and74

weakens social control, increasing misbehavior and crime (Miethe et al. 1991; Sampson 1988).75

Both social control and structural perspectives solely focus on individuals’ interactions without76

considering individuals’ private interests. These perspectives pay little attention to how unconven-77

tional interests increase with urbanization (Fischer 1975) and how these interests relate to misbe-78

havior.79

In contrast, the sub-cultural perspective advocates that population concentration brings together80

individuals with shared interests, which produces private social networks built around these inter-81

ests, promoting a social support for behavioral choices. Fischer (1975) posits that population size82

has an impact on the creation, diffusion, and intensification of unconventional interests. He proposes83

that large populations have sufficient people with specific shared interests which enable social in-84

teraction and lead to the emergence of subcultures. The social networks surrounding a subculture85

bring normative expectations that increase the likelihood of misbehavior and crime (Fischer 1975,86

1995).87

These three perspectives—structural, social control, and sub-cultural—expect that more people88

in an area lead to more crime in that area. In the case of cities, we know that population size is89

indeed a strong predictor of crime (Bettencourt et al. 2007) . The existence of a population–crime90

relationship implies that we must adjust for population size to analyze crime in cities properly.91
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Crime rate per capita92

In the literature, the typical solution for removing the effect of population size from crime numbers93

is to use ratios such as94

crime rate per capita =
crime

population
, (1)

which are often used together with a multiplier that contextualizes the quantity (e.g., crime per95

100,000 inhabitants) (Boivin 2013). However, though crime rates are popularly used, they present96

at least two inadequacies. First, the way we define population affects crime rates. The common97

approach is to use resident population (e.g., census data) to estimate rates, but this practice can98

distort the picture of crime in a place: crime is not limited to residents (Gibbs and Erickson 1976),99

and cities attract a substantial number of non-residents (Stults and Hasbrouck 2015). Instead, re-100

searchers suggest to use ambient population (Andresen 2006, 2011) and account for the number of101

targets, which depends on the type of crime (Boggs 1965; Cohen et al. 1985).102

Second, Eq. (1) assumes that the population–crime relationship is linear. The rationale behind103

this equation is that we have a relationship of the form104

crime∼ population, (2)

which means that crime can be linearly approximated via population. Because of the linearity as-105

sumption, when we divide crime by population in Eq. (1), we are trying to cancel out the effect106

of population on crime. This assumption implies that crime increases at the same pace of pop-107

ulation. Not all theoretical perspectives, however, agree with such a type of growth, and many108

urban indicators, including crime, have been shown to increase with population size in a nonlinear109

fashion (Bettencourt et al. 2007).110

Cities and scaling laws111

Much research has been devoted to understanding urban growth and its impact on indicators such112

as gross domestic product, total wages, electrical consumption, and crime (Bettencourt 2013; Bet-113

tencourt et al. 2007, 2010; Gomez-Lievano et al. 2016). Bettencourt et al. (2007) have shown that114

a city’s population size, denoted by N, is a strong predictor of its urban indicators, denoted by Y ,115

exhibiting a relationship of the form:116

Y ∼ Nβ . (3)

This so-called scaling law tells us that, given the size of a city, we expect certain levels of wealth117

creation, knowledge production, criminality, and other urban aspects. This expectation suggests118

general processes underlying urban development (Bettencourt et al. 2013) and indicates that regu-119
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larities exist in cities despite of their idiosyncrasies (Oliveira and Menezes 2019). To understand120

this scaling and urban processes better, we can examine the exponent β , which describes how an121

urban indicator grows with population size.122

Bettencourt et al. (2007) presented evidence that different categories of urban indicators ex-123

hibit distinct growth regimes. They showed that social indicators grow faster than infrastructural124

ones (see Fig. 1A). Specifically, social indicators, such as number of patents and total wages, in-125

crease superlinearly with population size (i.e., β > 1), meaning that these indicators grow at an126

increasing rate with population. In the case of infrastructural aspects (e.g., road surface, length of127

electrical cables), there exists an economy of scale. As cities grow in population size, these urban128

indicators increase at a slower pace with β < 1 (i.e., sublinearly). In both scenarios, because of129

nonlinearity, we should be careful with per capita analyses.130

When we violate the linearity assumption of per capita ratios, we deal with quantities that can131

misrepresent an urban indicator. To show that, we use Eq. (3) to define the per capita rate C of an132

urban indicator as the following:133

C =
Y
N
∼ Nβ−1, (4)

which implies that rates are independent from population only when β equals to one—when β 6= 1,134

population is not cancelled out from the equation. In these nonlinear cases, per capita rates can135

inflate or deflate the representation of an urban indicator depending on β (see Fig. 1B) (Alves et al.136

2013; Bettencourt et al. 2010). This misrepresentation occurs because population still has an effect137

on rates. By definition, we expect that per capita rates are higher in bigger cities when β > 1,138

whereas when β < 1, we expect bigger cities having lower rates. In nonlinear situations, when139

we compare cities via rates, we introduce an artifactual bias in analyses and rankings of urban140
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Fig. 1. The urban scaling laws and rates per capita. The way urban indicators increase with population
size depends on the class of the indicator. (A) Social aspects, such as crime and total wages, increase super-
linearly with population size, whereas infrastructural indicators (e.g., road length) increase sublinearly. (B)
In nonlinear scenarios, rates per capita still depend on population size.
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indicators.141

More crime in cities?142

In the case of crime, researchers have found a superlinear growth with population size. Betten-143

court et al. (2007) showed that serious crime in the United States exhibits a superlinear scaling144

with exponent β ≈ 1.16, and some evidence has confirmed similar superlinearity for homicides in145

Brazil, Colombia, and Mexico (Alves et al. 2013; Gomez-Lievano et al. 2012). Previous works146

have also shown that different kinds of crime in the U.K. and in U.S. present nonlinear scaling147

relationships (Chang et al. 2019; Hanley et al. 2016). Remarkably, the existence of these scaling148

laws of crime suggests fundamental urban processes that relates to crime, independent of cities’149

particularities.150

This regularity manifests itself in the so-called scale-invariance property of scaling laws. It is151

possible to show that Eq. (3) holds the following property:152

Y (κN) = g(κ)Y (N), (5)

where g(κ) does not depend on N (Thurner et al. 2018). From a modeling perspective, this relation-153

ship reveals two aspects about crime. First, we can predict crime numbers in cities via a populational154

scale transformation κ (Bettencourt et al. 2013). This transformation is independent of population155

size but depends on β which tunes the relative increase of crime in such a way that g(κ) = κβ . Sec-156

ond, Eq. (5) implies that crime is present in any city, independent of size. This implication arguably157

relates to the Durkheimian concept of crime normalcy in that crime is seen as a normal and neces-158

sary phenomenon in societies, provided that its numbers are not unusually high (Durkheim 1895).159

In general, the scale-invariance property tells us that crime in cities is associated with population160

in a somewhat predictable fashion. Crucially, this property might give the impression that such a161

regularity is independent of crime type.162

However, different types of crime are connected to social mechanisms differently (Hipp and163

Steenbeek 2016) and exhibit unique temporal (Miethe et al. 2005; Oliveira et al. 2018) and spatial164

characteristics (Andresen and Linning 2012; Oliveira et al. 2015, 2017; White et al. 2014). It is165

plausible that the scaling laws of crime depend on crime type. Nevertheless, the literature has mostly166

focused on either specific countries or crime types. Few studies have systematically examined the167

scaling of different crime types, and the focus on specific countries has prevented us from better168

understanding the impact of population on crime. Likewise, the lack of a comprehensive systematic169

study has limited our knowledge about the impact of the linear assumption on crime rates. We still170

fail to understand how per capita analyses can misrepresent cities in nonlinear scenarios.171

In this work, we characterize the scaling laws of burglary and theft in twelve countries and172

investigate how crime rates per capita can misrepresent cities in rankings. Instead of assuming that173

the population–crime relationship is linear, as described in Eq. (2), we investigate this relationship174
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under its functional form as the following:175

crime∼ f (population). (6)

Specifically, we examine the plausibility of scaling laws to describe the population–crime rela-176

tionship. To estimate the scaling laws, we use probabilistic scaling analysis, which enables us to177

characterize the scaling laws of crime. We use our estimates to rank cities while accounting for178

the effects of population size. Finally, we compare these adjusted rankings with rankings based on179

per-capita rates (i.e., with the linearity assumption).180

Results181

We use data from twelve countries to investigate the relationship between population size and crime182

at the city level. We examine annual data from Belgium, Canada, Colombia, Denmark, France,183

Italy, Portugal, South Africa, Spain, the United Kingdom, and the United States (see Table I). In our184

research, we are not interested in comparing countries’ absolute numbers of crime. We understand185

that international comparisons of crime have several problems because of differences in crime def-186

initions, police and court practices, reporting rates, and others (Takala and Aromaa 2008). In this187

work, we want to investigate how crime increases with population size in each country, focusing on188

burglary and theft (see Supplementary Information for data sources). We analyze data of both types189

of crime in all considered countries, except Mexico, Portugal, and Spain, where we only have data190

for one kind of offense.191

TABLE I. Burglary and theft annual statistics in twelve countries: number of data points n, sample mean ȳ,
sample standard deviation S, and maximum value ymax.

Country n
Theft Burglary

ȳ S ymax ȳ S ymax

Belgium 588 60.84 286.51 4397 95.60 209.02 2721
Canada 283 1115.14 3393.88 37150 293.90 791.13 7782

Colombia 513 182.04 1514.68 36306 40.08 228.06 4856
Denmark 98 1157.67 3851.29 38011 330.71 330.60 2157

France 100 8311.12 12400.34 108846 2389.94 2515.24 12511
Italy 107 17470.72 30860.27 218052 2217.50 2642.61 18101

Mexico 1659 237.56 959.59 14999 - - -
Portugal 279 - - - 51.38 86.91 850

South Africa 199 2305.23 8758.52 93793 1190.03 3212.93 28143
Spain 144 7846.72 25111.99 236026 - - -

United Kingdom 313 1763.43 1965.61 19766 620.98 685.40 4825
United States 8337 471.82 2345.27 108376 127.33 626.16 19859
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The scaling laws of crime in cities192

To assess the relationship between crime Y and population size N (see Fig. 2), we model P(Y |N)193

using probabilistic scaling analysis (see Methods). In our study, we examine whether this relation-194

ship follows the general form of Y ∼ Nβ . First, we estimate β from data, and then we evaluate the195

plausibility of the model (p > 0.05) and the evidence for nonlinearity (i.e., β 6= 1). Our results show196

that Y and N often exhibit a nonlinear relationship, depending on the type of offense.197
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Fig. 2. The population–crime relationship in twelve countries. Different criminology theories expect a
relationship between population size and crime. They predict, however, divergent population effects, such as
linear and superlinear crime growth. Yet, crime rates per capita assume a linear crime growth.
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In most of the considered countries, theft increases with population size superlinearly, whereas198

burglary tends to increase linearly (see Fig. 3). Precisely, in nine out of eleven countries, we find that199

β for theft is above one; our results indicate linearity for theft (i.e., absence of nonlinear plausibility)200

in Canada and South Africa. In the case of burglary, we are unable to reject linearity in seven201

out of ten countries; in France and the United Kingdom, we find superlinearity, and, in Canada,202

sublinearity. In almost all considered data sets, these estimates are consistent over two consecutive203

years in the countries we have data for different years (see Appendix I).204

Our results show that the general form of Y ∼Nβ is plausible in most countries, but that this com-205

patibility depends on the offense. We find that burglary data are compatible with the model (> 0.05)206

in 80% of the considered countries. In the case of theft, the superlinear models are compatible with207

data in five out of nine countries. We note that, in Canada and South Africa, where we are unable208

to reject linearity for theft, the linear model also lacks compatibility with data.209

We find that the estimates of β for each offense often have different values across countries—for210

example, the superlinear estimates of β for theft range from 1.10 to 1.67. However, when we211
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Fig. 3. The scaling laws of crime. We find evidence for a nonlinear relationship between crime and pop-
ulation size in more than half of the data sets. In most considered countries, theft exhibits superlinearity,
whereas burglary tends to display linearity. In the plot, the lines are the error bars for the estimated β of each
country–crime for two consecutive years, circles denote a lack of nonlinearity plausibility, triangles represent
superlinearity, and upside-down triangles indicate sublinearity.
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analyze each country separately, we find that β for theft tends to be larger than β for burglary in212

each country, except for France and the United Kingdom.213

In summary, we find evidence for a nonlinear relationship between crime and population size214

in more than half of the considered data sets. Our results indicate that crime often increases with215

population size at a pace that is different from per capita. This relationship implies that analyses216

with a linear assumption might create distorted pictures of crime in cities. To understand such217

distortions, we have to examine how nonlinearity influences comparisons of crime in cities, when218

linearity is assumed.219

The inadequacy of crime rates and per capita rankings220

We investigate how crime rates of the form C =Y/N introduce bias in comparisons and rankings of221

cities. To understand this bias, we use Eq. (3) to rewrite crime rate as C ∼ Nβ−1. This relationship222

implies that crime rate depends on population size when β 6= 1. For example, in Portugal and223

Denmark, this dependency is clear when we analyze burglary and theft numbers (see Fig. 4). In the224

case of burglary in Portugal, linearity makes C independent of population size. In Denmark, since225

theft increases superlinearly, we expect rates to increase with population size. In this country, based226

on data, the expected theft rate of a small city is lower than the ones of larger cities. We have to227

account for this tendency in order to compare crime in cities; otherwise, we introduce bias against228
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larger cities.229

To account for the population–crime relationship found in data, we compare cities using the230

model P(Y |N) as the baseline. We compare the number of crime in a city with the expectation of231

the model. For each city i with population size ni, we evaluate the z score of the city with respect to232

P(Y |N = ni). The z score tells us how much more or less crime a particular city has in comparison233

to cities with similar population size, as expected by the model. These z scores enable us to compare234

cities in a country and rank them while accounting for population size differences. We denote this235

kind of analysis as a comparison adjusted for population–crime relationship.236

For example, in Denmark, the theft rate in the municipality of Aalborg (≈ 0.0186) is almost the237

same as in Solrød (≈ 0.0188). However, less crime occurs in Aalborg than the expected for cities of238

similar size, while crime in Solrød is above the model expectation (see Fig. 4B). This disagreement239

arises because of the different population sizes. Since Aalborg is more than ten times larger than240

Solrød, we expect rates in Aalborg to be larger than in Solrød. When we account for this tendency241

and evaluate their z scores, we find that the z score of Aalborg is −2.47, whereas in Solrød the242

z score is 2.43.243

Such inconsistencies have an impact on crime rankings of cities. The municipality of Aarhus,244

in Denmark, for example, is in the top twelve ranking of cities with the highest theft rate in the245

country. However, when we account for population–crime relationship using z scores, we find that246

Aarhus is only at the end of the top fifty-four ranking.247

To understand these variations systematically, we compare rankings based on crime rates with248

rankings that account for population–crime relationship (i.e., adjusted rankings). Our results show249

that these two rankings create distinct representations of cities. For each considered data set, we rank250

cities based on their z scores and crime rates C then examine the change in the rank of each city. We251
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Fig. 5. The inadequacy of per capita rankings. Per capita ranking can differ substantially from rankings
adjusted for population size, depending on the scaling exponent. In Italy and Denmark, for example, (A)
theft ranks (top) diverge considerably more than the ranks for burglary (bottom). Data points represent cities’
positions in the rankings. (B) In nonlinear cases, these rankings diverge, as measured via rank correlation.
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find that the positions of the cities can change substantially. For instance, in Italy, half of the cities252

have theft rate ranks that diverge in at least eleven positions from the adjusted ranking (Fig. 5A).253

This disagreement means that these rankings disagree about half of the cities in the top ten most254

dangerous cities.255

We evaluate these discrepancies by using the Kendall rank correlation coefficient τ to measure256

the similarity between crime rates and adjusted rankings in the considered countries. We find that257

these rankings can differ considerably but converge when β ≈ 1. The τ coefficients for the data sets258

range from 0.6 to 1.0, exhibiting a dependency on the type of crime; or more specifically, on the259

scaling (Fig. 5B). As expected, as β approaches to 1, the rankings are more similar to each other.260

For example, in Italy, in contrast to theft, the burglary rate rank of half of the cities only differs from261

the adjusted ranking in a maximum of two positions (Fig. 5A).262

Discussion263

Despite being used virtually everywhere, crime rates per capita have a strong assumption that crime264

increases at the same pace as the number of people in a region. In this work, we investigated how265

crime grows with population size and how such a widespread assumption of linear growth influences266

cities’ rankings.267

First, we analyzed crime in cities from twelve countries to characterize the population–crime268

relationship statistically, examining the plausibility of scaling laws to describe this relationship.269

Then, we ranked cities using our estimates and compared how these rankings differ from rankings270

based on rates per capita.271

We found that the assumption of linear crime growth is unfounded. In more than half of the272

considered data sets, we found evidence for nonlinear crime growth—that is, crime often increases273

with population size at a different pace than per capita. This nonlinearity introduces a population274

effect into crime rates. Our results showed that using crime rates to rank cities substantially differs275

from ranking cities while adjusting for population size.276

From academia to news outlets, crime rates per capita are arguably used because they provide277

us with a familiar measure of criminality (Boivin 2013). Our work implies, however, that they can278

create a distorted picture of crime in cities. For example, in superlinear scenarios, we expect bigger279

cities to have higher crime rates. In this case, when we use rates to rank cities, we build rankings280

that big cities are at the top. But, these cities might not experience more crime than what we expect281

from places of the same size. It is an artifactual bias due to population effects still present in crime282

rates.283

Because of this inadequacy, we advise caution when using crime rates per capita to compare284

cities. We recommend first evaluating the linear plausibility before analyzing crime rates, and avoid-285

ing them when possible. Instead, we suggest comparing z scores computed via the model estimated286

using the approach discussed in the manuscript (Leitão et al. 2016).287

We highlight that crime rates per capita also suffer from the population definition issue—that is,288
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how we define population affects crime rates. In this work, we used the resident population to ana-289

lyze the population–crime relationship. We understand that crime is not limited to residents (Gibbs290

and Erickson 1976), and cities attract non-residents (Stults and Hasbrouck 2015). Much literature291

suggests using ambient population and account for the number of targets (Andresen 2006, 2011;292

Boggs 1965). However, this data is difficult to collect when dealing with different countries. Future293

research should investigate the scaling laws using other definitions of population, particularly using294

social media data (Malleson and Andresen 2016; Pacheco et al. 2017).295

In this work, we shed light on the population–crime relationship. The linear assumption is296

exhausted and expired. We have resounding evidence of nonlinearity in crime, which disallows us297

from unjustifiably assuming linearity. In light of our results, we also note that the scaling laws are298

plausible models only for half of the considered data sets. We need better models—in particular,299

models that account for the fact that different crime types relate to population size differently. More300

adequate models will help us better understand the relationship between population and crime.301

Data and methods302

Preprocessing data303

We gathered data sets of different types of crime at the city level from 12 countries: Belgium,304

Canada, Colombia, Denmark, France, Italy, Portugal, South Africa, Spain, United Kingdom, and305

United States. To examine different types of crime in these countries, we need to have a way to306

denote each type of crime in each place using a general description. The way we categorize the307

different types of crime are summarized in the Supplementary Material.308

Probabilistic scaling analysis309

We use probabilistic scaling analysis to estimate the scaling laws of crime. Instead of analyzing310

the linear form of Eq. (3), we use the approach developed by Leitão et al. (2016) to estimate the311

parameters of a distribution Y |N that has the following expectation:312

E[Y |N] = λNβ , (7)

that is, N scales the expected value of an urban indicator (Bettencourt et al. 2013; Gomez-Lievano313

et al. 2012; Leitão et al. 2016). Note that this method does not assume that the fluctuations around314

lny and lnx are normally distributed (Leitão et al. 2016). Instead, we compare models for P(Y |N)315

that satisfy the following conditional variance:316

V[Y |N] = γE[Y |N]δ , (8)
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where typically δ ∈ [1,2]. To estimate the scaling laws, we maximize the log-likelihood317

L = lnP(y1, . . . ,yK |n1, . . . ,nK) =
K

∑
i=1

lnP(yi|ni), (9)

since we assume yi as an independent realization from P(Y |N). In this work, we use an implementa-318

tion developed by Leitão et al. (2016) that maximizes the log-likelihood with the ‘L-BFGS-B’ algo-319

rithm. We model P(Y |N) using Gaussian and log-normal distributions, so we can analyze whether320

accounting for the size-dependent variance influences the estimation. In the case of the Gaussian,321

the conditions from Eq. (7) and Eq. (8) are satisfied with322

µN(x) = αxβ and σ
2
N(x) = γ(αxβ )δ , (10)

whereas in the case of the log-normal distribution,323

µLN(x) = lnα +β lnx− 1
2

σ
2
LN(x) and σ

2
LN(x) = ln

[
1+ γ(αxβ )δ−2

]
. (11)

In log-normal case, note that, if δ = 2, the fluctuations are independent of N, thus this would be the324

same as using the minimum least-squares approach (Leitão et al. 2016). With this framework, we325

compare models that have fixed δ against models that δ is also included in the optimization process.326

In the case of the Gaussian, we have fixed δ = 1 and free δ ∈ [1,2]. In the case of the log-normal,327

we have fixed δ = 2 and free δ ∈ [1,3].328

We compare each of the four models individually against the linear alternative (with fixed β = 1),329

to test the nonlinearity plausibility. With the fits of all types of crime and countries, we measure the330

Bayesian Information Criteria (BIC), defined as331

BIC =−2lnL + k lnn, (12)

where k is the number of free parameters in the model and lower BIC values indicate better data332

description. The BIC value of each fit enables us to compare the ability of the models to explain333

data.334
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Appendices437

Appendix I: Results from the probabilistic scaling analysis438

To test the plausibility of a nonlinear scaling, we compare each model against the linear alternative439

(i.e., β = 1) using the difference ∆BIC between the fits for each data set. We follow Leitão et al.440

(2016) and define three outcomes from this comparison. First, if ∆BIC < 0, we say that the model441

is linear (→), since we can consider that the linear model explains the data better. Second, if442

0 < ∆BIC < 6, we consider the analysis of β 6= 1 inconclusive because we do not have enough443

evidence for the nonlinearity. Finally, if ∆BIC > 6, we have evidence in favor of the nonlinear444

scaling, which can be superlinear (↗) or sublinear (↘). We also use ∆BIC to determine the model445

P(Y |N) that describes the data better. In Table II and Table III, we summarize the results in that we446

a dark gray cell indicates the best model based on ∆BIC, a light gray cell indicates the best model447

given a P(Y |N) model, and ∗ indicates that the model is plausible (> 0.05).448

TABLE II. β estimates for the case of thefts using log-normal and normal fluctuations.

Log-normal Gaussian
δ = 2 δ ∈ [1,3] δ = 1 δ ∈ [1,2]

Belgium (2015) 1.63 (0.12) ↗ 1.64 (0.12) ↗ 2.11 (0.27) ↗ 1.67 (0.17) ↗
Belgium (2016) 1.66 (0.15) ↗ 1.66 (0.14) ↗ 2.10 (0.18) ↗ 1.75 (0.19) ↗
Canada (2015) 1.09 (0.06) ↗ 1.04 (0.05) → 1.07 (0.11) → 1.04 (0.06) →
Canada (2016) 1.03 (0.04) → 1.04 (0.05) → 1.06 (0.34) ◦ 1.03 (0.05) →

Colombia (2013) 1.25 (0.07) ↗ 1.23 (0.07)↗∗ 1.89 (0.09) ↗ 1.31 (0.08) ↗
Colombia (2014) 1.26 (0.07) ↗ 1.24 (0.09)↗∗ 1.89 (0.09) ↗ 1.36 (0.08) ↗
Denmark (2015) 1.28 (0.10)↗∗ 1.27 (0.13)↗∗ 1.45 (0.33) ↗ 1.27 (0.14) ↗
Denmark (2016) 1.27 (0.14)↗∗ 1.28 (0.18)↗∗ 1.58 (0.37) ↗ 1.28 (0.18) ↗

France (2013) 1.24 (0.09) ↗ 1.23 (0.07)↗∗ 1.59 (0.44) ↗ 1.30 (0.12) ↗
France (2014) 1.24 (0.10) ↗ 1.22 (0.08) ↗ 1.70 (0.57) ↗ 1.34 (0.18) ↗

Italy (2014) 1.33 (0.11)↗∗ 1.31 (0.10)↗∗ 1.37 (0.15) ↗ 1.31 (0.09) ↗
Italy (2015) 1.32 (0.09)↗∗ 1.29 (0.11)↗∗ 1.35 (0.14) ↗ 1.29 (0.10) ↗

Mexico (2015) 1.30 (0.04) ↗ 1.31 (0.04) ↗ 1.98 (0.02) ↗ 1.32 (0.04) ↗
Mexico (2016) 1.26 (0.04) ↗ 1.26 (0.04) ↗ 1.98 (0.01) ↗ 1.30 (0.05) ↗

South Africa (2016) 0.97 (0.11)→∗ 0.99 (0.10)→∗ 1.33 (0.20) ↗ 1.02 (0.11) →
Spain (2015) 1.18 (0.11) ↗ 1.19 (0.11) ↗ 1.27 (0.19) ↗ 1.22 (0.12) ↗
Spain (2016) 1.20 (0.11) ↗ 1.20 (0.11) ↗ 1.31 (0.20) ↗ 1.24 (0.13) ↗

United Kingdom (2015) 1.24 (0.07) ↗ 1.31 (0.10) ↗ 1.45 (0.30) ↗ 1.55 (0.32) ↗
United Kingdom (2016) 1.26 (0.09) ↗ 1.33 (0.10) ↗ 1.50 (0.37) ↗ 1.59 (0.35) ↗

United States (2014) 1.12 (0.01) ↗ 1.06 (0.01) ↗ 1.07 (0.06) ↗ 1.04 (0.04) ↗
United States (2015) 1.13 (0.01) ↗ 1.06 (0.01) ↗ 1.08 (0.07) ↗ 1.05 (0.04) ↗

449

450
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TABLE III. β estimates for the case of burglaries using log-normal and normal fluctuations.

Log-normal Gaussian
δ = 2 δ ∈ [1,3] δ = 1 δ ∈ [1,2]

Belgium (2015) 1.10 (0.06) ↗ 1.09 (0.05) ◦ 1.21 (0.11) ↗ 1.09 (0.05) ◦
Belgium (2016) 1.08 (0.06) ◦ 1.07 (0.05) ◦ 1.18 (0.10) ↗ 1.08 (0.05) ◦
Canada (2015) 0.93 (0.05) ◦ 0.93 (0.04)↘∗ 1.04 (0.10) → 0.95 (0.06) ◦
Canada (2016) 0.91 (0.04)↘∗ 0.90 (0.05)↘∗ 1.00 (0.10) → 0.90 (0.04) ↘

Colombia (2013) 0.90 (0.07) ◦∗ 0.93 (0.07) → 1.18 (0.44) → 0.96 (0.07) →
Colombia (2014) 0.94 (0.07)→∗ 0.95 (0.06) → 1.16 (0.51) → 0.99 (0.07) →
Denmark (2015) 1.11 (0.26) → 0.91 (0.14) → 0.92 (0.14)→∗ 0.93 (0.13)→∗
Denmark (2016) 1.15 (0.24) → 0.89 (0.15) → 0.90 (0.13) → 0.92 (0.17) →

France (2013) 1.29 (0.09)↗∗ 1.27 (0.09)↗∗ 1.31 (0.11)↗∗ 1.27 (0.09) ↗
France (2014) 1.29 (0.10)↗∗ 1.27 (0.10)↗∗ 1.34 (0.10) ↗ 1.27 (0.09) ↗

Italy (2014) 1.13 (0.15)→∗ 1.11 (0.16)→∗ 1.09 (0.17) → 1.09 (0.12)→∗
Italy (2015) 1.09 (0.15)→∗ 1.07 (0.13)→∗ 1.06 (0.15)→∗ 1.05 (0.12)→∗

Portugal (2015) 0.99 (0.06)→∗ 0.98 (0.05)→∗ 1.13 (0.13) → 0.99 (0.10) →
Portugal (2016) 1.02 (0.05) → 1.01 (0.06) → 1.11 (0.09) ◦ 1.05 (0.10) →

South Africa (2016) 0.91 (0.09) → 0.91 (0.08) → 1.07 (0.09) ◦ 0.97 (0.12) →
United Kingdom (2015) 1.39 (0.11)↗∗ 1.42 (0.10)↗∗ 1.47 (0.13) ↗ 1.40 (0.10) ↗
United Kingdom (2016) 1.35 (0.11)↗∗ 1.36 (0.10)↗∗ 1.46 (0.14) ↗ 1.37 (0.11) ↗

United States (2014) 0.99 (0.01) → 0.99 (0.01) → 1.19 (0.11) ↗ 1.07 (0.05) ↗
United States (2015) 0.98 (0.01) → 0.98 (0.01) ◦ 1.17 (0.08) ↗ 1.07 (0.06) ↗
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