
To appear in “Understanding Crime through Science” (Springer, 2019)

Spatial concentration and temporal regularities in crime

Marcos Oliveira1, ∗ and Ronaldo Menezes2

1GESIS – Leibniz Institute for the Social Sciences, Cologne, Germany
2Department of Computer Science, University of Exeter, UK

Though crime is linked to different socio-economic factors, it exhibits remark-
able regularities regardless of cities’ particularities. In this chapter, we consider
two fundamental regularities in crime regarding two essential aspects of criminal
activity: time and space. For more than one century, we know that (1) crime oc-
curs unevenly within a city and (2) crime peaks during specific times of the year.
Here we describe the tendency of crime to concentrate spatially and to exhibit
temporal regularities. We examine these phenomena from the complex-system
perspective of cities, accounting for the possibility of both spatial heterogeneity
and non-stationarity in urban phenomena.
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1. Introduction
In the last few decades, scientists started to look at cities as evolving systems
that exhibit global order built from local-level decisions [1]. Cities bring
people together to interact, leading to the emergence of self-organization [2–
5]. Though local-level processes and decisions seem disordered, cities ex-
hibit remarkable regularities that are argued to result from their propensity to
expand and to develop [4–14]. Indeed, evidence of nonlinear growth in urban
indicators (e.g., wages, serious crime) with city size has motivated schol-
ars to envision cities as complex systems [15–18]. From this perspective,
researchers have unveiled scaling relationships in criminal activity [17–21]
which hints at regularities in crime [22–25].

The existence of scaling suggests general processes behind urban de-
velopment [26]. It indicates a general mechanism underlying urbanization
and implies that regularities exist in cities regardless of their idiosyncrasies.
The study of urban scaling has provided the means to understand urban
growth and its impact on indicators such as employment, patent, wage, and
crime [18, 19, 27, 28]. Most of these analyses, however, neglect details of
the indicators such as spatial distribution across the city, probably because
of the lack of fine-grained data [24]. In the case of crime, researchers have

∗ moliveira@tuta.io

mailto:moliveira@tuta.io


2

taken advantage of the availability of data to study the phenomenon [29–32]
and to describe its regularities [22–25, 33, 34].

Evidence of regularities in crime traces back to the nineteenth century.
Almost simultaneously, Adolphe Quetelet and André-Michel Guerry were
the first to describe regularities in criminal activity [35–38]. For almost two
centuries, crime in cities has been known to exhibit seasonality and to be
unevenly distributed [37, 38]. With these findings, Quetelet and Guerry pi-
oneered the viewpoint of physical laws governing human populations [35].
Though distinct socio-economic factors influence crime, remarkable regu-
larities exist in its dynamics. In this chapter, we discuss regularities in crime
concerning its spatial distribution and its temporal dynamics.

In the case of spatial regularities, researchers have found that criminal
events tend to cluster spatially [39]. Offenses concentrate in such a way that
most of the occurrences happen at very few places. This concentration has
been confirmed regardless of spatial granularity levels in a myriad of studies.
The overwhelming amount of evidence makes us expect that, in any city,
some areas will have disproportionately more crime than others [39]. Such
ubiquity has brought to this observation the status of a law, namely the law of
crime concentration, which states that a small number of micro-geographic
units account for most of the offenses in a neighborhood or city [39]. In
Section 2, we discuss the characteristics of crime concentration in cities and
its relationship with the type of crime and city size.

In addition to displaying spatial regularities, crime is known to depend on
time constraints and to exhibit temporal regularities [40]. Much research has
been devoted to describing periodic changes in crime rates such as annually
and weekly. Adolphe Quetelet linked weather variations to aggression to
explain criminal seasonality [36, 40]. From his perspective, the heat would
cause the stress needed to turn people more likely to offend. His so-called
“thermic law” of crime, however, has been since replaced by an understand-
ing of indirect relevant effects [40, 41]. For instance, fluctuations in social
dynamics may affect three requirements for crime: offender, target, and op-
portunity [40, 42]. In Section 3, we discuss the temporal regularities in crime
when we account for both spatial heterogeneity and non-stationarity in cities.

The regularities as mentioned earlier have a direct impact on how we see
cities. With the their characterization, we provide a pathway for researchers
to create realistic models of crime and present the grounds to understand the
impact of local activities on global patterns of cities. In the last section of
this chapter, we discuss such aspects and the implication to policymaking.
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2. Spatial concentration
The spatial concentration of crime has been confirmed in different cities us-
ing various spatial aggregation units including street and area level (e.g., cen-
sus tracts, street segments) [43–46]. For instance, Fig. 1A depicts the spatial
distribution of thefts in Chicago, IL. In this example, we can see some re-
gions of the city having disproportionately more criminal activity than oth-
ers. We want to characterize the phenomenon over different cities to further
study this spatial regularity. For this, first, we need a general approach to
analyze the city. With a general method, we avoid biases due to cities’ par-
ticularities (e.g., blocks size, length of the street segments) [24]. We can
achieve this by building spatial aggregation units based on the population
distribution across the city. Specifically, we divide the area of a city into
regions with equal population size (i.e., number of residents), then we ag-
gregate offenses that happened within the same regions.

With these counts, we can now analyze the empirical distribution of
crime in cities. Fig. 1B shows the Lorenz curves of the crime distribution
in Chicago for burglaries, robberies, and thefts. The Lorenz curves help
us to assess the concentration of crime. The curves in Fig. 1B indicate the
tendency of crime to concentrate spatially regardless of the offense type.
However, note that the level of concentration seems to depend on the offense
type. A similar tendency also occurs in 25 other locations from the United
States and the United Kingdom: theft concentrates more than robbery, and
robbery more than burglary (see Fig. 2A).

To describe these quantities statistically, we can fit the distribution of
crime with different distributions and then compare them using the likeli-
hood ratio test [24]. In the majority of the 25 cities, the probability distri-
bution of crime across a city can be described by a power law p(x) ∝ x−α

where the exponent α relates to the type of crime. The different types of
crime present distinct levels of concentration which manifests on the range
of the power-law exponent: for thefts, αt is between 2.1 and 3.0; whereas
the exponents for burglaries αb and robberies αr vary in wider ranges with
αr within 2.4 and 4.1, and αb between 2.9 and 6.0. The different dynamics
of each type of crime might be the cause of the distinct exponent intervals
and thus the level of concentration. Note that, in some cases that α exhibits
large values (e.g., burglary), the exponential and the power-law distributions
are both good descriptions of the data [24].

We also need to study the stability of the concentration, since such a high
level of concentration could indicate a somehow static city [24]. To examine
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Fig. 1. Crime clusters spatially with a concentration level that depends on
the offense type. For example, (A) depicts the spatial distribution of theft in
Chicago, IL. In the figure, darker colors mean higher crime rates. This map il-
lustrates the tendency of crime to cluster in specific regions of Chicago. This con-
centration depends on the type of offense. Each curve in (B) shows the relationship
between the cumulative crime share and the cumulative share of the corresponding
number of regions ordered by crime counts (i.e., Lorenz curves). Theft concentrates
more than robbery, and robbery more than burglary. This spatial concentration of
crime can be describe with (C) a power-law distribution p(x) ∝ x−α where the ex-
ponent α relates to the type of crime. Figures adapted from [24].

the stability, we can measure the uncertainty of the positions in the rank of
criminal spots over time. Precisely, we calculate the Shannon entropy Hrt (i)
of each position i in the criminal ranks of regions rt which are created using
the number of offenses weekly aggregated [24]. Using data from 20 cities
of the U.S., the mean normalized entropy (i.e., the sample mean over the
positions in the rank) is around 0.95, indicating that criminal spots are likely
to vary across regions over time. The hottest spots (i.e., the first positions
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Fig. 2. Crime concentration is scale-invariant but depends on crime type. With
data from 25 cities, the Lorenz curves in (A) demonstrate the dependence between
the type of crime and concentration level. This concentration, however, is inde-
pendent of city size. (B) depicts a comparison between concentration exponent for
theft, population size, and the number of thefts. In this double-y-axes plot, squares
represent the number of crime in a city during one year, and diamonds stand for
the average power-law exponent for a city. Though population size has a clear re-
lationship with the number of offenses, it fails to have an association with α . This
independence is confirmed using the Hoeffding’s test of independence. Figures
adapted from [24].

in the rank), however, present distinct dynamics with the entropy Hrt (i) in-
creasing quickly with the position i. This result means that the regions with
the most criminal activity tend to be the same ones. Similarly, the places
with the least criminal activity (i.e., the last positions in the rank) are usually
the same regions. This analysis also reveals that the rank of thefts presents
lower entropy in the first rank positions in comparison to the other types of
crime [24]. In other words, we have more certainty about the whereabouts
of the hottest spots of theft than the hottest spots of robbery and burglary.

These findings indicate the level of spatial crime concentration as a reg-
ularity that occurs regardless of idiosyncrasies of the city. In particular, this
is an intriguing finding because of the allometric scaling of crime in cities.
Fig. 2B shows the relationship between αt of some U.S. cities and their pop-
ulation size. On the one hand, crime numbers relate to city size; on the other
hand, crime concentration (i.e., the exponent) seems to be independent of
city size. We can study the statistical dependence of this relationship using
the Hoeffding’s test of independence [47]. Specifically, we can test the rela-
tionship between the population size of the cities and the average power-law
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exponent α . With data from the considered U.S. cities, we could not reject
the hypothesis that the size of the city and the level of crime concentration
are independent with the 95% confidence [24]. This result suggests crime
concentration as an attribute of criminal phenomena which occurs regard-
less of the population size of the city.

3. Criminal rhythms
Much effort has been devoted to studying temporal regularities in crime since
Quetelet’s seminal work on crime seasonality [48] . Researchers have con-
firmed annual seasonality in several cities and studied other regularities re-
lated to different temporal conditionals such as the day of the week, the
hour of the day, and the presence of holidays [48]. Most of the studies in
the literature, however, assume a temporal regularity of crime activity lim-
ited within fixed regional localities [25]. From the perspective of cities as
complex systems, this assumption neglects the continuous process of orga-
nization in cities [1, 5]. Such stationary assumption implies that the urban
dynamics in all regions across the city remain constant over time [25].

To study crime from the viewpoint of dynamic cities, we have to con-
sider the possibility of non-stationarity and spatial heterogeneity. For this
task, we can use wavelet analysis to track the periodicity of a criminal time
series. With wavelet analysis, we can evaluate the statistical significance of a
component (e.g., annual, biannual) in a time series over time. If we account
the spatial heterogeneity, we are also able to describe how the rhythms of
crime are distributed across the city and how they vary over time.

In our case, a time series is a discrete sequence Y = {y(1) , . . . ,y(N)}
with observations of uniform time step δ t in which y(t) represents the pro-
cessed number of thefts (i.e., without long-term trends) at the week t. Here
we denote Y c as the city-level time series of city c, whereas Y c

i represents the
time series of the region i in the city c. For instance, Fig. 3A depicts Y c of
selected cities from the United States.

First we study the temporal regularities (i.e., periodicity) in Y c using its
wavelet transform WY c(s,n). This transform gives us the contribution of a
periodicity (scale) s at different moments n in the time series. The local
wavelet spectrum, defined as |WY c(s,n)|2, enables us to identify temporal
regularities in a series. For this, we average the spectrum across either time
n or period s. To identify cycles in the entire series, we average WY c (s,n)
over n, known as the global wavelet spectrum and denoted as W2

(s), which
provides us an averaged picture of the periods in the time series [49]. Fig. 3B
shows the global spectrum of some cities in the United States. The peak
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Fig. 3. Crime exhibits a circannual cycle at the city level. In (A), the time se-
ries of theft y(t) for selected cities indicate the rhythms of crime. With crime data
from 12 cities, this cycle is confirmed using (B) the global wavelet spectrum of the
wavelet transform of y(t) and comparing against the null model Pk generated from
autocorrelated random noise (dashed line); two cities, however, failed to exhibit this
periodicity. This striking temporal regularity is seen in (A) the waves (black curves)
that are reconstructed using only the circannual band. Figures adapted from [25].

around 1.0 indicates the existence of a statistically significant annual period-
icity of crime. This analysis confirms previously well-documented evidence
that crime exhibits circannual cycles [48].

Note that W2
(s) is an average over time n and thus neglects any tempo-

ral dynamics such as non-stationarity. To test the stationarity in these reg-
ularities, we average |WY c(s,n)|2 over scale s, yielding the scale-averaged
wavelet power. It enables us to analyze the temporal evolution of a periodic
signal in terms of a given band b = ( j1, j2). In our case, we want to examine
the circannual stationarity, so we evaluate the scale-averaged wavelet power
with j1 = 0.8 and j2 = 1.1 for each city and test this periodicity against a
null model. Fig. 4A shows the scale-averaged wavelet power for some cities.
Most of them exhibit stationary time series; that is, the circannual component
is present throughout the series. In fact, this stationarity is already evident in
Fig. 3A where the circannual component stays the same over time.

At such a city level, crime has a striking temporal regularity that offers the
impression of cities as stationary objects. This analysis, however, neglects
spatial heterogeneity. The continuous organization process in cities suggests
local-level dynamics changing across the city. We expect variations that
result from changes in human dynamics at the local and global levels of the
city (e.g., an influx of new residents, closing establishments, new subway
stations). To have a local-level view of cities, we can examine the time series
from smaller spatial aggregation units. Similarly to Section 2, we divide each
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Fig. 4. The circannual cycle is stationary at the city level but non-stationary at
the local level. In (A), the scale-averaged wavelet power of the wavelet transform of
the city-level time series with respect to the circannual band shows that the city-level
time series are stationary over time (selected cities in the figure). At the local level,
however, the time series are non-stationary. For instance, (B) depicts the scale-
averaged wavelet power of four regions in Chicago. These curves exemplify local-
level time series changing their circannual periodicity over time. Figures adapted
from [25].

city c into regions of similar population size and build the time series Y c
i for

each region i.

Now we can examine the stationarity of crime at the local level. Fig. 4B
shows the scale-averaged power of three regions in Chicago regarding the
circannual component. Though they all exhibited a circannual cycle at some
interval, they have distinct dynamics. For example, region #40 presents sta-
tionarity while region #247 loses its circannual periodicity in 2014. Though
at the city level crime exhibits stationarity, circannual rhythms change over
time at the local level. The aggregated data hide local dynamics. In fact,
other periodicities take place at lower spatial granularity such as biannual
and triannual but disappear at city level [25].

With all the time series Y c
i of a city, now we can examine crime from

bottom to up. We can study the non-stationarity in cities at the local level
from a holistic perspective. For this, we count the number of regions that
significantly show the circannual period at each time step. Specifically, the
composed scale-averaged power Cb(t) is defined as the number of regions
that exhibit a statistically significant band b = ( j1, j2) at the time step t [25].
With data from 12 cities in the U.S., we can show that Cb(t) exhibits a typical
value without much variability over time; that is, cities stay with a similar
number of regions with 1-year cycle over time. This result is intriguing:
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though the time series are non-stationarity, the number of time series with a
circannual period remains somewhat the same throughout the series.

Yet, note that Cb(t) considers only the number of regions and neglects
the regions themselves. We do not know if the number of regions stays the
same because of the same set of regions. To understand better Cb(t), we
are also interested in the amount of time ∆t that a region exhibits a signif-
icant circannual periodicity. Precisely, we count the number of weeks that
each region keeps the circannual band significant continuously. From all the
considered cities, ∆t decays much earlier than the total time of the criminal
series. That is, in general, the amount of time that a region has a circan-
nual cycle is shorter than the entire time series. This result coupled with the
form of Cb(t) implies waves of crime traveling across the city—a finding
that agrees with the notion of cities continuously changing over time.

4. Discussion
Cities are evolving systems that exhibit global phenomena emerging from
local-level actions, presenting messy but ordered patterns at different lev-
els [5, 25]. From this perspective, we expect to find regularities in crime
which transcend cultural and socio-economic particularities of cities. With
the description of these regularities, we move towards better models to un-
derstand cities. In this chapter, we considered regularities present in two
fundamental aspects of crime: space and time.

The spatial concentration of crime is not only ubiquitous in cities but
also independent of the city size. The concentration level, however, depends
on the type of crime—perhaps because of different kinds of crime exhibit
particular dynamics. Such concentration coexists with the continuous dis-
placement of crime spots in cities. That is, crime constantly flows across
the city while maintaining the system organization in a way that its dynam-
ics and regularities appear to be scale-invariant. These features suggest an
understanding of crime from a complex-system perspective.

The well-documented seasonality in crime has a different picture when
we admit cities as dynamic and continually organizing processes. When
we account for spatial heterogeneity, we find that the circannual cycles of
crime are unevenly distributed across the city. When we also consider non-
stationarity, we observe features that agree with complex cities. On the one
hand, the seasonality is stationary at the city level, but on the other hand,
the criminal waves are non-stationary at the local level—they travel across
the city. These findings support analyzing crime under the perspective of
dynamic cities.
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The complex-system perspective of crime asks for tools and analyses that
cover the system as a whole in order to understand crime dynamics. Indeed,
the connectedness of the city rejects studies focusing on the hotspots of crime
and neglecting the “cold” areas. In this scenario, network-based approaches
might be essential to handle such mezzo level [22, 29, 32, 33].

The regularities discussed in this chapter have impacts on policy-making.
The independence of crime concentration with city size implies that high
crime regions are expected to exist as the city grows, urging for proper gov-
ernment policies. Still, cities continuously change over time; thus policy-
making needs evolving approaches and a constant assessment of the city.
In this regard, policy-makers need tools and up-to-date data to assess the
changes happening in cities. With the proper tools, we can learn more about
cities and help to improve them.
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