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Abstract—Swarm-based models have successfully solved real-
world problems in the past two decades and yet they continue to
exhibit a major shortcoming of premature convergence. Previous
research suggests that an appropriate exploitation-exploration
balance can prevent premature convergence and different ap-
proaches have been proposed to control this balance. Still, despite
several references demonstrating the interplay between social
interactions and swarm behavior, the majority of works lack
a network-based assessment of the level of balance in a swarm.
We propose that pacing social interactions is the key to balance
exploration-exploitation. Here we examine the impact of the
exploration-exploitation balance on the swarm performance by
controlling the pace at which the swarm goes from exploration
to exploitation. Our results revealed that this pace influences the
swarm dynamics and that different problems demand distinct
paces. Swarm-based models that are capable of adapting their
exploration-exploitation pace have the potential to overcome
premature convergence.

Index Terms—social interactions, self-organization, complex
systems, network science, swarm intelligence, particle swarm
optimization

I. INTRODUCTION

The idea of “intelligence” as in Swarm intelligence emerges
from the social interactions between the agents in the swarm.
We still fail, however, to understand the impact of these
interactions on the swarm dynamics. The ability of the swarm
to coordinate and to adapt comes from the rules that define the
interactions among individuals as well as between individuals
and the environment [1]–[3]. A minimal amount of interactions
is necessary for a system to exhibit coordination; nonetheless,
adaptability vanishes from a system that exhibits too many
interactions [4]. In nature, for instance, ants interact among
themselves to avoid random walking while being able to adapt
to the environment. In computational models, however, we
lack an understanding of such optimal balance which could
help us to build better intelligent tools.

Inspired by the flocking of birds, Particle Swarm Opti-
mizers (PSO) consist of a family of swarm-based optimiza-
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tion methods that rely on the interactions among individuals
searching for better solutions in a hyper-dimensional search
space [5]. These individuals are represented by simple reactive
agents (i.e., particles) that move through the search space
communicating and acquiring positional information from
other particles. Each particle moves in the problem space
with inertial energy influenced by two terms: the personal
experience and the social experience [2]. Despite different
approaches to weigh these terms, the swarm behavior ba-
sically results from particles updating themselves based on
other particles. Though the technique has been widely used,
it still presents a premature convergence problem in which
particles reach suboptimal solutions due to early equilibrium
states [2]. Such condition occurs when the swarm stagnates on
a local optimum usually because of the so-called exploration-
exploitation imbalance [2], [3].

The exploration-exploitation balance is a concept used in
different fields, ranging from human behavior to computer
science, which refers to the strategy of a search: the focus on
existing knowledge characterizes exploitation while seeking
for new knowledge defines exploration [2], [6]. From the
swarm perspective, exploration regards to the swarm’s ability
to explore the search space broadly, whereas exploitation
bounds the search on a particular area—an essential trade-
off for a good optimization technique [3]. To understand this
balance, researchers usually analyze the particularities of the
techniques; in the case of the PSO, most analyses focus on
the properties of particles, such as position and velocity—they
neglect the social interactions [7], [8].

By overlooking such an essential aspect of swarm intelli-
gence, one misses an opportunity to unveil the very process
that leads to a exploration-exploitation imbalance, which starts
from the interactions among individuals. Nevertheless, some
works have already attempted to understand the swarm behav-
ior by examining the social interactions among particles [9]–
[19]. Kennedy and Mendes showed that the infrastructure
through which particles interact influences the swarm per-
formance [9]. That is, the limits of social interactions have
an impact on the swarm dynamics [9], [12]. Note that such
analysis only takes into account the boundaries and neglect
the actual social interactions. Indeed, Oliveira et al. were



the first to examine the social interactions to assess swarm
behavior [16]. For that, they proposed a representation of the
swarm with a network that nodes are the individuals (i.e., the
particles) which are connected if they exchanged positional
information in a given iteration; and extended the concept to
capture such dynamics over the iterations [17]–[19].

Here we examine the social interactions within the swarm
while controlling the pace at which the swarm goes from ex-
ploration to exploitation. We want to understand the impact of
the exploration-exploitation pace on the swarm performance.
To control this pace, we use a dynamic topology as the
infrastructure of communication which presents a parameter
that allows us to tune this pace. We found that the exploration-
exploitation pace influences the swarm behavior and that
distinct problems demand distinct optimal paces. We advocate
that regulating social interactions is the key to achieve an
adequate exploration-exploitation balance, and as such we
need more studies on the interactions among individuals within
the swarm.

The remainder of this paper is organized as follows. In
Section II, we provide an overview on examining social
interactions within the swarm. We present the experimental
setup and the obtained results, respectively, in Section III and
Section IV. Finally, in Section V, we present a brief discussion
about our results.

II. BACKGROUND

We briefly present the Particle Swarm Optimization algo-
rithm in Subsection II-A and discuss how the communication
topology influences the swarm behavior. Then, in Subsection
II-B, we describe the procedures to examine the social inter-
actions in the swarm.

A. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization
method inspired by the social behavior in flocks of birds [5].
The technique consists of a swarm of particles in which
each particle i is defined by four vectors ~xi(t), ~pi(t), ~ni(t),
and ~vi(t), that play different roles in the meta-heuristic. The
current position ~xi(t) of the particle i is a d-dimensional vector
in the search space which represents a candidate solution to
the problem. Over the iterations, each particle i stores its
best position found in ~pi(t). The best position found by the
neighbors of the particle i is stored in ~ni(t) and is updated
based on the information received via communication between
particles. Finally, the velocity ~vi(t) of a particle i stores the
inertia and promotes the movement of the particles in the
system.

At each iteration, each particle i updates its current velocity
~vi(t) and then alters its position based on the current velocity,
as following:

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1) . (1)

In the original version of PSO, the particles update their
velocity in such way that the so-called explosion state may
occur—the velocities increase indefinitely [20]. To overcome

this undesired state, Clerc and Kennedy developed the con-
striction factor χ defined as

χ =
2∣∣2− ϕ−√ϕ2 − 4ϕ

∣∣ with ϕ = c1 + c2. (2)

The factor χ adjusts the influence of the previous particle
velocities during the optimization process, so the final equation
for the particles’ velocities is given by:

~vi(t+ 1) = χ ·
{
~vi(t) + ~r1c1 ·

[
~pi(t)− ~xi(t)

]
+ ~r2c2 ·

[
~ni(t)− ~xi(t)

]}
, (3)

where ~r1 and ~r2 are random vectors generated from a uniform
probability density function within the interval [0,1]. The
constants c1 and c2 are the cognitive and social acceleration
factors, respectively; they are non-negative constants that
weigh the cognitive and social components. Thus, each particle
i acts depending on the best position ~pi(t) and the best position
~ni(t) found by its neighbors.

B. Communication Topology

The swarm topology defines the capability of information
exchange among particles. This structure establishes the set
of particles from which each particle i can update its ~ni(t)
component at each iteration. In the original PSO paper, the
global topology was the first one introduced; with this static
structure, the particles are capable of exchanging information
with all the particles in the swarm—creating the ability to
achieve fast convergence in unimodal problems but causing
premature convergence in multimodal problems [5], [21].
In the case of local topologies, the infrastructure bounds
the communication by allowing only specific particles to
communicate [21]. Particularly, one of the most used local
topologies is the ring topology, in which each particle only
shares information with exact two other particles [21]. With a
ring topology, the communication is more distributed, so it is
argued that the swarm tends to explore different regions which
leads to better performance in multimodal problems—though
global and ring topologies exhibit much variability [22].

These topologies, however, are usually more suited to spe-
cific problems, so efforts were made to develop more balanced
topologies. Oliveira et al. proposed an adaptive topology in
which stagnated particles try to find better particles to be
connected [23]. When the swarm perceives that the search is
getting stagnated, the swarm modifies the flow of information.
For this, each particle contains a new attribute, called pk-
failure, that stores the fitness improvement of the particle
k. Every time the particle k does not improve its solution, pk-
failure increments, otherwise, pk-failure sets to zero. If a
particle k presents pk-failure higher than a certain threshold,
pk-failureT , this particle modifies its neighborhood by con-
necting to a new particle. The particles choose a new neighbor
probabilistically using a roulette wheel based on the rank of
the particles’ fitness (i.e., the best particles have higher chances



to be selected as new connections). The threshold of pk–
failure regulates how fast particles attempt to change their
neighborhood; this parameter allows us to control the swarm
settings. More information about this dynamic topology can
be found in [23].

C. Examining the Social Interactions

To examine the social interactions within the swarm,
Oliveira et al. defined that a social interaction in the PSO
happens when a particle i updates its position based on the
position of a particle j (the best neighbor of particle i is the
particle j) at a given iteration t. They defined the interaction
graph in which the weight of an edge (i, j) in the graph
is equal to the number of times the particle i was the best
neighbor of the particle j or vice-versa [17]. Additionally, they
used a time window to control the recency of the analysis, so
the interaction graph at iteration t with window tw is defined
as follows:

Itwij (t) =
t∑

t′=t−tw+1

[
δi,nj(t′) + δj,ni(t′)

]
, (4)

with t ≥ tw ≥ 1,

where δi,j is Kronecker delta. The time window tunes the
frequency-recency balance of the analysis. With high tw, the
graph is dominated by the most frequent interactions; while
low tw includes recent interactions.

The interaction graph allows us to measure the diversity
in the social interactions. For this, Oliveira et al. proposed
to measure how fast the interaction graph can be destroyed
(i.e., how fast the number of components increases as we
remove edges of the graph) [19]. If the graph is rapidly
destroyed, the swarm lacks diversity; otherwise, different
information flows are present within the swarm [19]. For a
given time window, the area under the destruction curve Atw

measures the diversity in the information flow for a given time
window. The communication diversity CD is defined as the
following:

CD(t) = 1− 1

|T ||S|
∑
t′w∈T

Atw=t′w
(t), (5)

where |S| is the number of particles in the swarm and T is a set
of time windows. Thus, swarms exhibiting high CD (i.e., low
values for Atw ) have the ability to have diverse information
flows, while low values for CD imply in swarms with only
few information flows (i.e., high value for Atw ). An ideal set
T would be one taking into account all time windows (i.e.,
interactions from tw = 1 until tw = t). Still, this procedure
can be computationally expensive given the vast number of
possible time windows, and a more reasonable approach is to
have a set of time window samples.

III. EXPERIMENTAL SETTINGS

Here we want to assess the behavior of the swarm while
controlling the exploration-exploitation pace, thus we sim-
ulated the PSO using the dynamic topology with different

pk-failureT . We want to examine the relationship between
pk-failureT (which regulates the pace at which the swarm
goes from exploration to exploitation) and the communication
diversity CD (which tells us about the exploration-exploitation
with respect to the social interactions). To that end, we
performed our experiments setting pk–failure equal to 2, 25,
50, 75, and from 100 to 1000, with increments of 100; and
also used global and ring topologies.

In order to assess the swarm, we need to validate their per-
formance across benchmark functions designed with specific
features that pose distinct challenges to these models such
as multi-modality. In this sense, we employed the following
CEC’2005 functions: Rosenbrock, Rastrigin, Griewank, Ack-
ley, Schwefel, and Sphere [24]. In all experiments, the number
of simulations is 30, the number of dimensions D is set to
1000, the maximum number of iterations is 6000, the swarm is
composed by 100 particles that are updated according to Eq. 3
with c1 = 2.05, c2 = 2.05, which guarantee the convergence
behavior of the algorithm [20]. The initial topology of the
dynamic topology is defined as the ring topology.

IV. RESULTS

Our results are organized into three parts. First, we show that
different functions require distinct exploration-exploitation
paces. Second, we demonstrate that different topologies pro-
mote distinct patterns of social interactions that are capable of
regulating how the swarm adapts its pace. Finally, we present
the different schemes of adaptation provided by the dynamic
topology.

A. The Appropriate Exploration-Exploitation Pace

Swarm-based models are generally designed assuming that
functions require the same exploration-exploitation pace and
thus tend to under-perform on specific problems due to either
late or premature convergence. Our results reveal that different
functions require distinct exploration-exploitation paces and
best solutions are found when the swarm adjusts its pace
accordingly (see Fig. 1). When comparing the performance
of PSO in different functions, ring and global topologies
alternate the functions on which they outperform each other—
confirming results in [22]. In this setting, since ring is the
least connected topology and global is the highest connected
topology, they regulate PSO at the lowest and highest paces,
respectively. Given the time constraints, the global topol-
ogy regulates PSO at exploitation pace and outperforms the
ring topology on functions requiring faster paces such as
Rosenbrock, Schwefel, and Sphere. In the case of Rastrigin,
Griewank, and Ackley, the ring topology regulates PSO at
exploration pace and outperforms the global topology

The dynamic topology regulates intermediate paces of
exploration-exploitation and allows the swarm to find better
solutions than the ring and global topologies in each function.
This regulation is controlled by the parameter pk-failureT

which determines the extent in which connections of an initial
ring topology are rewired. The higher this parameter (e.g., 900
and 1000), the less frequent connections are rewired and the



Fig. 1. Different functions require a distinct exploration-exploitation pace at which better solutions can be found. Each plot shows the fitness of final solutions
found by PSO with exploration-exploitation paces regulated by the dynamic topology (first 14 leftmost box-plots) as well as ring and global topologies (two
rightmost box-plots).

0.0

0.1

0.2

0.3

0.4

0.5

C
D

Rosenbrock

25 Ring Global

0.0

0.1

0.2

0.3

0.4

0.5
Rastrigin

400 Ring Global

0.0

0.1

0.2

0.3

0.4

0.5
Griewank

400 Ring Global

0 500 1000 1500 2000
Iteration (t)

0.0

0.1

0.2

0.3

0.4

0.5

C
D

Ackley

300 Ring Global

0 500 1000 1500 2000
Iteration (t)

0.0

0.1

0.2

0.3

0.4

0.5
Schwefel

75 Ring Global

0 500 1000 1500 2000
Iteration (t)

0.0

0.1

0.2

0.3

0.4

0.5
Sphere

2 Ring Global

Fig. 2. The interplay between exploration-exploitation pace and communication diversity. Different topologies promote distinct patterns of social interactions
that regulate how the swarm adapts its pace towards one required by each function. Each plot shows the communication diversity CD of PSO along the
iterations for the ring and global topologies as well as for the dynamic topology with pk–failure threshold equals to the value for which the best fitness
was found (see also Fig.1).
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Fig. 3. Schemes of adaptive pace provided by the dynamic topology. Each plot shows the communication diversity CD of PSO along the iterations for the
dynamic topology with different values of pk–failureT {2, 25, 50, 75, 100, 200}.

more the dynamic topology resembles its initial ring topology.
Similarly, the smaller this parameter (e.g., 2 and 25), the more
frequent connections are rewired and the more the dynamic
topology resembles a scale-free structure.

Further comparing the fitness found by PSO, functions
appear to require faster paces when the global is better than the
ring, and slower paces, otherwise. Nevertheless, PSO finds best
solutions when using the dynamic topology with intermediate
values of pk–failure: lower values when functions require
faster paces and higher values when functions require slower
paces. In the function Ackley, for instance, PSO finds the best
solution at the exploration-exploitation pace regulated by the
dynamic topology with pk–failure threshold equals to 300.

B. Social Interactions Regulate Exploration-Exploitation Pace

Our results show that different topologies promote dis-
tinct patterns of social interactions which in turn regulate
the exploration-exploitation pace (see Fig. 2). These distinct
patterns of social interactions are revealed by different levels of
communication diversity CD within the swarm. By assessing
the components of the interaction network, CD measures
the number of different information flows occurring in the
swarm: the higher the CD, the more exploration, whereas
the lower the CD, the more exploitation. Overall, the global
topology exhibits the lowest CD which slightly changes along
the iterations; the ring and dynamic topologies demonstrate
significantly higher CD that varies along the iterations towards
the exploration-exploitation pace required by each function.

The CD of the ring and dynamic topologies demonstrate
their adaptive capabilities given that they increase and decrease
their exploration-exploitation pace when functions require
faster paces (e.g., Schwefel) and slower paces (e.g, Ackley),
respectively. When compared to the ring and global topologies,
the dynamic topology shows a higher adaptive capability to
adapt its pace: by rewiring swarm connections to promote
different patterns of social interactions, it more rapidly reaches
values of CD that are more appropriate to the required pace
by each function.

C. Schemes of Adaptive Pace

Finally, we show that topologies with higher adaptive ca-
pabilities such as the dynamic topology can promote patterns
of social interactions that effectively regulate the exploration-
exploitation pace at which best solutions can be found (see
Fig. 3). Each adaptive scheme regulates distinct patterns of so-
cial interactions that promote different exploration-exploitation
paces along the iterations.

Using the lowest and highest values of pk–failure, the
dynamic topology provides adaptation schemes that regulate
patterns of social interactions closely resembling those of
global and ring topologies, respectively. However, the dynamic
topology is flexible to also provide intermediate adaptation
schemes that regulate balanced patterns of social interactions
and thus promote a better exploration-exploitation pace.

V. CONCLUSION

The essence of swarm intelligence are the social interac-
tions. Depending on their diversity, the swarm can exhibit high



exploitation and prematurely converge. To avoid premature
convergence, the dynamic topology controls the exploration-
exploitation balance by promoting patterns of social interac-
tions with distinct levels of communication diversity. This
mechanism makes the swarm to adapt itself towards an ap-
propriate exploration-exploitation balance. Such optimal pace,
however, depends on the particular problem in hand. There-
fore, future approaches must be able to adapt the pace.

By assessing social interactions instead of analyzing indi-
viduals’ properties, our method and results have the potential
to be applied to different swarm techniques. Such generality
opens the possibility to comprehensive analyses of swarm
intelligence, providing the means to build better swarm-based
tools.

All analyses performed here can be accessed at http://github.
com/macoj/network swarm/ and the same code can be applied
to other swarm-based techniques.
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