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Abstract. Since they were introduced, Particle Swarm Optimizers have
suffered from early stagnation due to premature convergence. Assess-
ing swarm spatial diversity might help to mitigate early stagnation but
swarm spatial diversity itself emerges from the main property that essen-
tially drives swarm optimizers towards convergence and distinctively dis-
tinguishes PSO from other optimization techniques: the social interaction
between the particles. The swarm influence graph captures the structure
of particle interactions by monitoring the information exchanges during
the search process; such graph has been shown to provide a rich over-
all structure of the swarm information flow. In this paper, we define
swarm communication diversity based on the component analysis of the
swarm influence graph. We show how communication diversity relates
to other measures of swarm spatial diversity as well as how each swarm
topology leads to different communication signatures. Moreover, we ar-
gue that swarm communication diversity might potentially be a better
way to understand early stagnation since it takes into account the (so-
cial) interactions between the particles instead of properties associated
with individual particles.

Keywords: PSO, Swarm Assessment, Premature Convergence, Early
Stagnation Analysis, Component Graph Analysis

1 Introduction

Particle Swarm Optimization (PSO) is a computational intelligence technique
inspired by the social behavior of bird flocks and used to solve optimization
problems [4]. The technique consists of a population (swarm) of simple reac-
tive agents (particles) interacting among themselves while exploring the search
space by seeking the best solutions. The communication between the particles
plays an important role on the swarm behavior [8]. Such aspect may be seen, for
instance, when the swarm topology is analyzed. The topology defines the neigh-
borhood of each particle thus impacting how the information is shared within



the swarm. Less connected topologies slow down the information flow since infor-
mation is transmitted indirectly through intermediary particles [5]. Conversely,
highly-connected topologies decrease the number of these intermediaries creating
a tendency for the swarm to move quickly towards local optima. These different
behaviors are also intimately related to the exploration-exploitation balance in
the swarm [6].

Although communication among particles is an essential aspect of swarm
behavior, many researchers only focus on the final result of the interactions be-
tween them such as using the particles properties (e.g. their positions, velocities,
etc.) to assess the swarm behavior [13, 16]. These approaches bring interesting
findings but they are actually analyzing the final results of the particles inter-
actions and not the information flow of the swarm execution. Some of the few
works addressing information flow introduced the concept of swarm influence
graph that captures the actual flow of information between the particles [9, 10].

The analyses performed with these approaches allow a better understand-
ing of the swarm search mode. However, they do not capture the dynamics in
the information flow during the algorithm execution, but only analyze a snap-
shot from a given iteration. The analysis of swarm dynamics can promote the
comprehension of its behavior which leads, for example, to swarm stagnation.

In this work we define swarm communication diversity using component anal-
ysis of the influence graph. We show how our definition relates to swarm behavior
and how each swarm topology leads to different communication signatures. We
argue that swarm communication diversity is a more suitable analysis of the
swarm because the social interactions of the particles are included, instead of
only properties associated with individual particles.

2 PSO, Diversity and Particle Interactions

Particle Swarm Optimization is a stochastic, population-based optimization tech-
nique inspired by the social behavior of bird flocks and is composed by particles
that move around the search space [4]. The equations that control the swarm are
not included in this paper but an interested reader should refer to the standard
PSO paper [1]. The particles can only share information with the ones in their
neighborhood defined by the swarm topology consisting of a graph in which two
nodes (particles) are linked if they are allowed to share information to each other.
The topology influences the flow of information between particles. For instance,
when the average distance between nodes is too short, the swarm tends to move
quickly towards the best solution found in earlier iterations which usually leads
to a fast convergence to the global optimum in unimodal problems, but with
the caveat of the possibility to prematurely reach a local optimum, specially in
multimodal problems [1, 5]. In this sense, communication topologies with fewer
connections may yield better results. Since the information spreads slowly, the
swarm has a better chance of exploring different regions of the search space.

In a global topology, the swarm shares the same (social) memory because par-
ticles are directly connected and any particle can be the information spreader



to all the other particles. Conversely, the particles have different neighbors in
local topologies and hence their social memories are different [1]. For instance,
in a ring topology, the particles can only communicate with two other particles
and although it prevents premature attraction of the whole swarm to a single
location due to slow spread of information, it brings the inconvenience of a slow
convergence time [1]. These extreme behaviors motivate considering topologies
that balance their strengths and weaknesses such as the von Neumann topol-
ogy [1, 5].

2.1 Early Stagnation and Swarm Diversity

Convergence and stagnation are closely related terms often referred interchange-
ably although they subtly differ from each other. Convergence towards global
optima tightly links to objective function improvement and is an appealing fea-
ture for any optimizer. Particularly in the case of PSO, premature convergence
means that the swarm attained an equilibrium state which is often a local op-
tima. Clearly, this is not desired since we would like the swarm to converge while
effectively working in order to find better candidate solutions. In fact, many
mechanisms to prevent premature convergence have been proposed [2, 14,17]

Stagnation is often the result of an exploration-exploitation imbalance that
causes the search space not to be explored adequately. This imbalance led re-
searchers to believe early stagnation strongly relates to swarm spatial diversity
and that consequently the assessment of such diversity is a way prevent unde-
sired stagnation [14]. In this sense, PSO would ideally start the optimization
process in exploration mode with a high diversity and, as the search space is
adequately explored, it would initiate the exploitation mode focusing its efforts
on smaller areas of the search space with a lower diversity.

Metrics for assessing swarm diversity are mostly spatial in nature and quan-
tify swarm diversity as the degree of dispersion of particles around a given swarm
center [12]. We enumerate the main diversity metrics as hereafter described. Let
|S| be the size of swarm S, xi the position of particle i, f [·] the fitness function,
xbest(t) the position of the best particle at iteration t, f̄(t) the average fitness
at iteration t, and d(p, q) the euclidean distance between p and q.

1. Aggregation degree:

AD(t) =
f(xbest(t))

f̄(t)
. (1)

2. Normalized average distance around the swarm center using the swarm di-
ameter or radius:

DD
x̄ (t) =

Dx̄(t)

D(t)
, DR

x̄ (t) =
Dx̄(t)

R(t)
. (2)

3. Average distance around the swarm center x̄ [7]:

Dx̄(t) =
1

|S|

|S|∑
i=1

d
(
xi(t), x̄(t)

)
. (3)



4. Average of the average distance around all particles in the swarm:

Dall(t) =
1

|S|

|S|∑
i=1

Dxi(t). (4)

5. Diameter, the maximum distance between the positions of any two particles
i and j in the swarm:

D(t) = max
i 6=j∈[1,|S|]

d
(
xi(t),xj(t)

)
. (5)

6. Radius, the maximum distance between the swarm center x̄ and any particle
i in the swarm:

R(t) = max
i∈[1,|S|]

d
(
xi(t), x̄(t)

)
. (6)

These metrics attempt to quantify swarm diversity as the amount of swarm
expansion and dispersion. Both diameter, D, and radius, R, are highly sensitive
to outliers since one single particle can greatly influence the result. Since they are
employed as normalization factors, the same applies for the normalized average
distance around the swarm center (DD

x̄ or DR
x̄ ). The average distance around

the swarm center, Dx̄, as well as the average of the average distance around all
particles in the swarm, Dall, are less sensitive to outliers and while Dx̄ considers
a swarm center x̄, Dall takes the average of each particle as the center. The
aggregation degree, AD, measures how close the best fitness f(xbest(t)) found at
iteration t is from the average swarm fitness f̄(t) at iteration t. This supposedly
approximates the degree of divergence among the new found candidate solutions
thus measuring swarm diversity under the fitness perspective.

The relationship between these swarm spatial diversity measures changes
depending on the topology and some may not be appropriate for local topologies.
The idea of a swarm center x̄ might make sense for a global topology but not
for a ring topology where more than one attractor might exist. Figure 1 depicts
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Fig. 1. Correlations between Swarm Diversity Metrics using the Pearson Correlation
Coefficient for Global (a), Ring (b) and (c) Von Neumann topologies. All simulations
were repeated 30 times and the averages were considered.



the correlations between these metrics regarding some main topologies and the
only correlation which remains strong in all topologies are Dx̄ and Dall .

This consistent disagreement between swarm diversity metrics based on par-
ticles’ properties poses the question of what they are really measuring and if they
can be applied to topologies other than the global topology. Indeed, although
local topologies are less vulnerable to get trapped in local optima, the majority
of research neglects them and focus their studies in the global topology only.

2.2 The Influence Graph

In the simple version of the PSO, at a given iteration t, each particle i solely
gets information from its best neighbor ni(t). Since the swarm topology defines
the neighborhood of each particle, this structure only bounds the range of such
communication. On the other hand, the actual information exchange among the
particles is described by the influence graph whose elements are defined as:

Itij =

{
1, if ni(t) = j or nj(t) = i,
0, otherwise.

(7)

This graph represents the structure of the particles that shared information
between them at a given iteration t and differs from the swarm topology (aka
communication graph) which is just a static graph determining the neighborhood
of each particle [10,11]. It is a snapshot of the swarm communication at iteration
t, thus the interactions occurred in past iterations are not present in this graph.
The information exchanges between the particles during the whole algorithm
execution until iteration t can be conveniently defined as:

Iwt =

t∑
i=1

Ii. (8)

The result of this sum is a weighted graph in which the weights of the edges Iwtij
are equal to the number of the times two particles i and j exchanged information
during the algorithm execution [9]. The influence of each particle on each other
during the whole history of the swarm until t is represented in Iwt . In order to
understand a more recent history of the swarm, an useful weighted influence
graph at iteration t within a time window tw is defined as follows:

Itwt =

t∑
i=t−tw+1

Ii, with t ≥ tw > 0. (9)

In other words, Itwt is the communication structure of particles that commu-
nicated among themselves at most tw iterations before the iteration t. The value
of tw changes the analysis of Itwt in such way that the lower tw is, the shorter is
the social memory being analyzed.

The influence graph provides insightful information about the intricate be-
havior of the swarm [9]. Even with the lack of details from the particles, the
analysis of this graph allows one to examine the relationship between them.



(a) (b) (c)

Fig. 2. The monitoring of the exchange of information in the swarm is enough to assess
properties of the particles. The more distant two particles are in the influence graph,
the farther they are from each other in the search space. The plot is the 1000th iteration
of a run of the PSO algorithm optimizing the F6 function [15].

A simple supporting example of this is the distance between the particles in
the search space. Figure 2 depicts the correlation between the geodesic distance
among particles in the influence graph and the Euclidean distance between the
particles in the search space. For a swarm with von Neumann or ring topologies,
the more distant two particles are in the influence graph, the more certain we
are that the two particles are far away of each other in the search space. This
pattern is not as evident in the global topology due to the fact that the swarm,
in this case, is condensed somewhere in the search space and the particles are
nearer to each other than in the other topologies.

In fact, some analyses have been carried out with regards to the well-con-
nected components in the influence graph [9]. Figure 3 exemplifies this kind of
analysis, the edges are removed gradually according their weight in such way that
components start to appear during the process. The speed that these components
emerge as the destruction of the graph occurs is related to the search mode
present in the swarm. For instance, an exploration mode is characterized by a
slow increase in the number of components due to the different information flows
present in the swarm [9]. On the other hand, this graph is rapidly destroyed in
a swarm depending only on a small set of particles, a behavior related to an
exploitation search mode.

3 Communication Diversity

The structure of the way information flows within the swarm can be assessed
by the analysis of the well-connected components in the influence graph. The
patterns found in this analysis are related to the diversity in the communication
of the particles, i.e. the capacity of the swarm to have different information flows
among its individuals. Figures 4(a)-4(d) represent the communication diversity
of the swarm. These plots depict the increasing number of components that
emerge when edges are gradually removed from the influence graph with different



(a) 2 components (b) 20 components (c) 64 components

Fig. 3. The velocity components emerge while edges are removed from the influence
graph is related to the search mode of the swarm. The edges are removed gradually
depending on a threshold: below (a) 50% of the highest edge weight, (b) 65% and
(c) 75%. The different colors represent distinct components with more than one node.
This is the 1000th iteration of a run of a PSO algorithm with the swarm using a
von Neumann topology.

time windows at the 1000th iteration of a run of a PSO algorithm on a ring/2-
regular (Figure 4(a)), von Neumann/4-regular (Figure 4(b)), 30-regular (Figure
4(c)) and global/100-regular (Figure 4(d)) topologies. The gradual change in the
number of components depends on the time window and represents the speed of
the destruction occurring on the influence graph. A sharp behavior in the increase
of the number of components, as seen in Figures 4(c) and 4(d), is associated to
lack of diversity in the communication, while a more gradual increase relates to
more diversity, as depicted in Figures 4(a) and 4(b).

The interactions between particles during the execution of a PSO algorithm
might lead to variations in the communication diversity. For example, Figure 4(e)
shows how the number of components (y-axis) varies while applying different fil-
ters of weight removal on the influence graph with tw = 100. For fixed topologies
such as ring and von Neunmann, the number of components presents a consis-
tently stationary behavior and reflects the static nature of these topologies.For a
dynamic topology, the number of components could present an increasing or de-
creasing trend depending on how the communication structure changes towards
the desired search mode. Besides, the variations in these curves along iterations
(x-axis) suggest that an analysis of communication diversity needs to be per-
formed also regarding time dimension. In order to carry out such analysis, we
need to assess the communication diversity.

3.1 Assessing the Communication Diversity

Any column in the plots depicted in Figures 4(a)-4(d) represents the destruction
of the influence graph with a certain tw. A separate example of this curve is
shown in Figure 5 with tw = 100 and tw = 1000 for swarms with different
topologies. Since such curves are always monotonically increasing, a simple way
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Fig. 4. The structure with which communication occurs within the swarm leads to
distinct swarm behaviors. Each topology has its own communication diversity signa-
ture described by the number of components emerging (color intensity) as edges are
removed (y-axis) of the influence graph with different time windows (x -axis). The edges
are removed from the graph based on their weight and 2tw, i.e. the maximum weight
possible in an influence graph with time window tw. For a given filter, the number of
components consistently varies within a well defined range through the iterations (e).



to have a characterization of them is to calculate the normalized area under
the curve, namely Atw=t. Such procedure can be analogously performed with
the snapshots of the communication diversity in Figures 4(a)-4(d) by taking
into account all time windows. However, this approach can be computationally
expensive given the great number of possible time windows. An approach to
circumvent the computational cost is to use only a small set of time windows T
in a such way that communication diversity (cd) can be assessed by:

cd = 1− 1

|T ||S|
∑
t∈T

Atw=t. (10)
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Fig. 5. The area under the curve of number of components that appear as the influence
graph is destroyed can be used to compare swarm behaviors. The greater is the area,
the less diverse is the communication of the swarm. For instance, a swarm with Global
topology presents more exploitation than a swarm using the Ring topology.

3.2 Communication Diversity and Stagnation

An implementation of the PSO algorithm with 100 particles was used to op-
timize the Ackley’s F6 function which is a shifted, single-group m-rotated, m-
nonseparable and has many local minima. In all experiments, the number of
dimensions was set to 1000 and m to 50, c1 = 2.05, c2 = 2.05 , guaranteeing the
algorithm to converge [3].

The experiments were performed with the swarm using connected k-regular
graphs (i.e. graphs in which each node has k neighbors) as communication topol-
ogy with k = 2, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 (special cases are:
k = 2, ring topology; k = 4, von Neumann topology; and k = 100, global topol-
ogy). The PSO was executed 30 times for each topology and the influence graph
was retrieved from the information exchange between the particles in each it-
eration of each execution. In order to analyze stagnation, we defined that the
swarm stagnated at iteration t if the global best fitness did not improve by at
least ρ between consecutive iterations until t+ δ with ρ = 1.02 and δ = 500.
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Fig. 6. The stagnation occurs earlier in swarms with k-regular topology as k in-
creases (a), a tendency associated to the decrease of communication diversity (b). The
boxplot (a) contains the value of the iteration the swarm stagnated in each of the
30 runs of the PSO algorithm, and the curve (b) depicts the average communication
diversity until the iteration of stagnation.

Our results demonstrated the capability of communication diversity to ex-
plain the stagnation phenomenon for different communication topologies of Par-
ticle Swarm Optimizers using an unified approach based on graph component
analysis. For instance, communication diversity (Figure 6(b)) appear to firmly
constrain the iteration PSO stagnates (Figure 6(a)). In fact, by closely analyzing
each execution (Figure 7), different topologies can be clustered based on their
communication diversity. These clusters captures the signatures associated with
the communication diversity of each topology which plausibly explains, for in-
stance, why the ring topology tends to consistently stagnate later when compared
with the global topology. Surprisingly, communication diversity also relates to
fitness improvement with a higher correlation (Figure 7, inset) when compared
with the other swarm spatial diversity measures albeit it only takes into account
the component analysis of the influence graph and disregards properties related
to individual particles such as fitness, position or velocity.

The results suggest that swarm stagnation may be more related to how infor-
mation flows through the swarm social structure than to the way specific particle
properties are spread across the search space. For instance, simply restarting the
swarm in order to highly disperse the particles might make sense considering the
viewpoint of swarm spatial diversity but it does not make sense under the per-
spective of communication diversity for which this restarted swarm would be
stagnated after the restart and still fated to consistently stagnate. Nevertheless,
this also need to be confirmed in other problems and PSO variants.

4 Conclusions and Future Works

Early stagnation poses a barrier for Particle Swarm Optimizers and has only been
tackled based on the assessment of the swarm spatial diversity. We advocate that
our communication diversity based on component graph analysis of the influence



Fig. 7. The communication diversity of the swarm is associated to the iteration that
stagnation occurs in the swarm. Each topology presents its range of communication
diversity with some topologies sharing such range as well as iteration of stagnation.
Each point is an execution of the 30 for each topology considered. Inset: Communication
diversity is associated to the speed the global fitness f of the swarm changes between
iterations t and t+1. The plot contains all the iterations until the swarm gets stagnated
from 30 executions of PSO for each topology considered. The fitness improvement here
is defined as

ft−ft+1

ft+1
.

graph is a good step towards an unified approach that can potentially better
characterize early stagnation for different topologies.

Therefore, the design of stagnation prevention techniques should start con-
cerning about communication diversity since it accounts for the social interac-
tions among the individuals and not just properties associated with individual
particles as the swarm spatial diversity. Approaches to control the communi-
cation diversity may be a fruitful way to control the execution of swarms in
PSO and maybe other optimization approaches where an influence graph can be
defined.

For future works, we will assess our communication diversity using other PSO
variants in a panel of different problems, design a PSO variant with a stagnation
prevention mechanism based on our communication diversity and extend the
influence graph to other algorithms such as Ant Colony Optimization (ACO).
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