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Abstract We have never lived in a safer world. After peaking around 1985, both
violent crime (homicide, robbery, assaut and rape) and property crimes (burglary,
larceny and vehicle theft) are on a downward trend; from 1993 and 2012 crime
activity has dropped by more than 40% (total number of crimes). Despite the good
news, crime is still prevalent in most large cities. FBI reports that in 2013 there
were about 3,098 crimes per 100,000 habitants in the USA, with 2,730 of them being
property crimes and 367 violent. What most people can agree is that one preventable
crime is one crime that should not have taken place. The unveiling of the structure
of criminal activity can lead to a better understanding of crime as a whole which
in turn can help us provide better protection to our citizens. We demonstrate in this
paper that crime follows a very intersting spatial community pattern regardless of
the type of crime, criminal activity aggregates in communities of well defined sizes.
We believe the results of this paper is a first step towards a theory of crime modeling
using network science.
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1 Introduction

The understanding of crime activity has for a long time puzzled government offi-
cials, law-enforcement officers, and researchers. A well-performed study on crime
structure may have direct benefits to people’s lives as it can lead to safer cities. Ac-
cording to the FBI Annual Crime Report [28], the USA is today much safer than it
used to be in the 80s and 90s with about half of the number of crimes per 100,000
inhabitants, but still higher than the levels we enjoyed in the 60s and also higher
than many countries in Europe. Indeed crime rate is dropping but the understanding
of crime as a complex system can lead to further gains in public safety.

Law enforcement tends to be reactive and many times a step behind criminal
activity. What if we could change this “game”? What if we could give the police
an edge by making them understand criminal structure and perhaps prevent some
activity before it takes place? This is becoming reality in this big-data world we live
in. The change in crime rate from the 60s to today can probably be explained by a
technology lag. In the 60s, we had a smaller population and hence crime was easier
to understand and prevent with “manual” approaches. As the population grew, our
ability to effectively keep track of what was going on diminished and consequently
crime rate ramped up. More recently, we have seen technology catching up via the
use of data analysis and mining. What if we could do more? Like many complex
systems we believe there is a structure that governs the interactions of criminals.
This paper is an initial step towards the understanding of this structure.

Most of the works in crime structure start from the premise that crime is a con-
sequence of factors such as wealth (or lack of) [14], education levels [17], age [19],
and many others. However, more recently we have seen scientist starting to look at
structure in particular social networks, as a way to explain the existence of crime
in certain neighborhoods [7, 8] but to our knowledge scientist are yet to look at the
structure of spatial distributions of crime. Few have attempted to look at spatial data
and analysis in the context of crime control [1] with most of the studies being related
to understanding the emergence of hotspots of crime [11, 25]. In this paper we show
that the use of hotspots to understand crime spatial structure misses important fea-
tures that can be better represented and analyzed using networks. In fact, we show
that crime networks built from spatial data about crime location appears to reveal
social structures when the spatial resolution is high. Our results show that hidden in
the distribution of crime (hotspots) is a social structure that may be related to the
social network of criminals or the social network of people affected by crimes. In
this paper we show how we can uncover this structure.

2 Related Work

Crime is a complex issue and many factors affects its occurrence including: so-
ciological, economic, psychological, biological, philosophical and even religious
factors [12].
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With regards to crime structure two theories in criminology can be highlighted:
the routine activity and social disorganization theories. The former argues that crim-
inal activity occurs at the convergence of three things: a potential offender, a lack
of guardianship or supervision, and a target [5]. The latter contends that criminal
activity is the result of the social and physical environments of the neighborhood
at hand [32]. Both theories seek to model crime phenomena using spatial and geo-
graphical context.

The aforementioned opportunistic nature of the routine activity theory supports
that criminal activity typically occurs in the sphere of familiarity of the criminal. De-
spite this sphere of familiarity being peculiar to the individual, areas of high traffic,
such as downtown areas, lie within the sphere of familiarity of many individuals; it
is feasible that these criminals with the same sphere of familiarity are aware of each
other. This aspect is also related to the fact that criminals typically commit crimes
within a short distance from their home [15].

Metropolitan areas are typically organized by regions of different land uses such
as: residential, commercial, and industrial use. The presence of types of crimes dif-
fers between these land uses; neighborhoods with residential housing and no com-
mercial businesses are perceived as safe and non-residential land uses are correlated
with an increase in criminal activity [10]. Non-residential areas are typically found
to have higher traffic in comparison to residential areas, consequently they witness
to more crime [31]. Non-residential land use, such as shopping centers or public
parks, coincides with an increase in foreign or non-residential presence. This pres-
ence of such strangers negatively impacts a neighborhood’s social structure [24].

Street network (from layout) are not only correlated with an increase in crime in-
cidence but additionally have a relationship with the typical journey-to-crime length
of an offender [15]. Roadways and public transportation link together different ar-
eas of a criminal’s sphere of familiarity and facilitate travel outside of a criminal’s
immediate neighborhood. The type of crime can affect the journey-to-crime length.
For example, violent crime trips are shorter in length than property crime trips [15].

Despite the understanding we have of crime activity, its causes and consequences,
recent studies continue to look at spatial crime analysis using approaches related to
the formation of hotspots [20]. Additionally, there has been many efforts that tries
to analyze crime activity in light of the existence of social networks. Many studies
have looked into characteristics of ties such as their strength [23], the frequency of
ties [6], and the race and gender of those with more ties [30, 22]. Yet, these studies
rarely consider the structure of the overall network and they assume the existence
of some information regarding the social structure of criminals. However, this is not
always possible and, in fact, such structure may not be available. Law enforcement
datasets rarely include information about criminals acquaintances and when they
do, the reliability of such information is doubtful.

The approach we propose then is to focus on the journey-to-crime [15] and build
networks out of the distance between crimes. Rather than social networks we have
crime networks where nodes represents actual crimes and links between crimes re-
lated to a distance (or sphere) between the crimes. Our results are important because
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we demonstrate that a spatial networks of crime appear to contain information about
the social structure of the people involved in the criminal activity.

3 Constructing Network of Crimes

The network creation mechanism is based on the geographical proximity between
crimes. Two events are connected if they occurred within a certain distance. This
network creation model is as simple as possible. In fact, the mechanism is the same
as used to generate random geometric graphs [9].

Notice that the connection definition we are using here is basically the same as
in the context of geometric graphs and does no presume any actual relationship be-
tween the events other than their proximity. Therefore, the network structures are
going to be fully determined by the spatial distribution of the crimes. Each point
in our dataset can be seen as the location of a person—in this particular case, an
offender— at a given moment, in a similar manner as checkins in geolocated social
networks [21] or mobile phone activities in Call Detail Records datasets [29, 26].
The main difference however is that in our data there is no individual-level identifi-
cation.

Although such data could evidently yield a higher-resolution analysis, we de-
cided to focus on the coarse-grained spatial distribution of crimes. The rationale
for this is twofold: (1) in this paper we aim to uncover network structures (possi-
bly) embedded within the spatial distribution of crimes; (2) for practical reasons, we
based our analysis exclusively on publicly available data and hence we do not use
any individual-level information.

That said, the theoretical basis supporting our approach are grounded mainly on
two principles, both very well documented in the criminology literature:

1. For most crime trips, the distance from the offender’s home to the crime location
is relatively short and the probability of an offender committing a crime decays
with the distance from their home [13, 15];

2. Offenders tend to live near to their associates and long-distance ties are rare [18].

Not surprisingly, these characteristics conform to two behaviors largely observed
in general human dynamics: (1) most of our trips are for short distances and very
long jumps are less likely to occur [27, 29] and (2) the probability of finding a
social tie between two individuals decays as a power function of the distance [16,
2, 29]. Therefore, it is plausible to assume that patterns on spatial distribution of
crimes should emerge from the convolution of both the individual and social level
dynamics.
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4 Experimental Results

4.1 Spatial distribution of crimes

Hot spots of crimes do not occur uniformly in a region. This aspect of the criminal
activity can be visualized in the heatmaps depicted in Figures 1(a-c) from the Los
Angeles area. This type of map, which shows the places where most crimes were
committed, is widely used as a tool to understand the emergence of hot spots as
well as to elaborate law enforcement strategies. These heatmaps are geolocalized
histograms that allow a prompt analysis of the crime frequency in a specific region.
For example, as stated, the aforementioned maps show that there are certain sub-
regions with high criminal activities placed across the Los Angeles area. These maps
in Figure 1(a), 1(b) and 1(c) depict the placement of the hot spots regarding assaults,
burglaries and thefts, respectively. Their analyses suggest that these types of crime
have particular arrangements in the region and that they may occur due to different
kinds of crime activity dynamics.

However, such maps do not allow analyses beyond the criminal activity fre-
quency of a region. An example of this insufficient data description is that although
these visualizations make possible to see many different hot spots together, there is
no information about their relationships nor the overall structure that may enable
the emergence of the hot spots. Actually, this structural analysis is carried out more
by the viewer of the map than brought by the heatmap as a tool. Nevertheless, this
structural information can be useful to understand underlying mechanisms in crimi-
nal phenomena. For instance, although the examination of Figure 1(a), 1(b) and 1(c)
suggests that these particular kind of criminal activities have different dynamics
across the region, this comparison may neglect similar underlying mechanisms re-
lated to the emergence of hot spots.

In order to capture the similarity of different types of crimes to subsequently
analyses, Figure 1(d) is elaborated in such way that only the hottest spots of each
kind of crime are considered. The hottest spots are the ones that the crime frequency
is two standard deviations higher than the average frequency of this type of criminal
activity, thus the map does not present any intensity interval. The intersections be-
tween these spots are shown in the map by different colors, as described in the map
legend. The rationale of this visualization is to understand the hot-spot mixing in the
region, i.e. the places where different crimes are concentrated. In the Los Angeles
metropolitan area the mixing of the criminal activities coexistence are related to the
colors in the map and their percentage is shown in Table 1.

The hot-spot mixing indicates that assaults, burglaries and thefts tend to coexist
as hot spots in Los Angeles area. This finding may hint to the existence of some
similarities in possible underlying mechanisms that lead to the emergence of these
hot spots. Conversely, assault and burglary do present some particularities that allow
them to occur more independently across the area considered. In other words, these
results suggest that these different types of crime seem to have a core behavior as
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well as particular behaviors. Regardless of this analysis, heatmaps look at crime
frequency and are not enough to assess such underlying mechanisms.

Table 1 The criminal hot-spot mixing in the Los Angeles metropolitan area presents the coexis-
tence of different criminal activities regions. This mixing reveals that the hot spots of thefts usually
happen in companion to burglaries and assaults. On the other hand, the other two seem to be less
linked to other crimes, resulting in more independent hot spots. In the table below the letters indi-
cate the types of crime, hence A & B represents the region of the overlap of assauts and burglaries.

Assault (A) Burglary (B) Theft (T) A & B A & T B & T A & B & T
(green) (red) (blue) (yellow) (cyan) (magenta) (white)

20% 24% 3% 26% 3% 5% 19%

(a) (b) (c)

(d)

Fig. 1 The places where crimes occur are not uniformly distributed in a region. The heatmaps
of these events, in the Los Angeles metropolitan area, for different types of crime, assault (a),
burglary (b) and theft (c), help the realization that hot spots of crime exist, but the approach is
not adequate to carry out structural analysis of the crimes. These heatmaps together can help us
visualize the different placements of the hot spots when different crimes are taken into account.
The coincidence map (d), an overlap of the hottest spots from these heatmap, shows that thefts
tend to happen in places where other crimes are also intensively happening, while burglaries and
assault may occur more independently.
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4.2 Microinteractions and the spatial distribution of crimes

Complex networks of a particular class often share several common topological
features. For example, a social network is expected to have a high coefficient of
clustering while having a short average path length. On the other hand, technological
networks such as the Internet tend to have a hierarchical topology.

The existence of such structural and topological patterns plays a central role in
order to have a better understanding of the various phenomena and real dynamics
driven by one or more network structures. This is especially important when the
complex network underlying a particular phenomenon can not be observed directly.

In this section, we seek to extract and identify possible network structures beyond
the spatial geometric network itself that we built. When we build a network by
simply connecting points geographically close to a distance d, this network will
have features of a spatial or geometric network.

4.2.1 Clustering Coefficient

Many complex networks are characterized by a high clustering coefficient. That is
specially true for geographically constrained networks where the characteristic link
length is bounded up to a distance d. In a spatial network, the global clustering
coefficient is expected to increase as a function of the distance d from fully discon-
nected nodes (when d = 0) to a single clique of size N (when d → ∞) where N
is the population size. However, neither of these two extremes are of much help in
understanding a complex phenomenon such as the dynamics behind criminal activ-
ities. Hence, there must be a characteristic radius d (or a function f(d)) where the
underlying networks unvail themselves.

In such spatial geometric networks, the clustering coefficient is a function of
the connection threshold d and should increase monotonically with it. To test this
hypothesis we analyzed the changes in the structure of the network for small incre-
ments in d starting from d = 0.02 miles to d = 3.2.

What was unexpected however is a gradual decrease observed in the clustering
coefficient for a particular range of d (as in Figure 2), deviating from the charac-
teristics of a spatial network [4, 33] whose clustering coefficient should increase
monotonically with d once the spatial boundaries are growing and the longer links
are becoming more frequent.

It is also noteworthy the fact that the clustering coefficient reached its minimum
for 0.4 ≤ d ≤ 0.8, for different cities and crime types suggesting that the networks
are undergoing a phase transition for some critical value of d ≈ 0.6. This behavior
could be related to the case in which for very small values of d, the spatial con-
straints does not play a role anymore and therefore the remaining network structure
could result from some other dynamic factor. To test such hypothesis, we inves-
tigate what other structural characteristics are also changing with d by comparing
their properties for d < 0.4 and d > 0.4.
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Fig. 2 The plots depict the evolution of the global clustering coefficients by the different linking
distance threshold d. The top row shows the clustering coefficient for each type of crime, assault,
burglary and theft. The bottom row shows the clustering coefficient for each of the three metropoli-
tan areas. The correlation between d and the clustering coefficient suggest a marked structural
change in the network with a critical point 0.4 ≤ d ≤ 0.8 miles. Even though the actual shape
of the curves varies over different networks, in all of them, the minimum clustering degree was
reached in the region close to d ≈ 0.6.

4.2.2 Degree Distribution

One next natural step would be an analysis to the degree distribution of the networks,
assessing how good they fit to a heavy-tailed distribution. The rationale here is that
a heavy tailed degree distribution is a key signature of some interesting complex
networks such as social networks [3]. On the other hand, this property does not hold
for other classes of networks, including spatial networks [4] which could indicate
that the networks are not just undergoing structural transformations but also their
signatures are transitioning from of one class of network to another.

From Figure 3, the linking threshold capable of producing networks with heavy-
tailed degree distribution happens when d = 0.1. Another interesting result is that
the power-law exponents of most of the networks have an exponent α ≈ 2.1 in
agreement to the characteristic exponent of scale-free networks.

Although the cumulative degree distributions were consistent with the findings
about the clustering coefficients in Section 4.2.1, this analysis is not sufficient to
assess the correlation between the value of d and the goodness of fit of a power law
to the degree distribution. For this task we used the Kolmogorov-Smirnov test to
check for which ranges of d the power-law distribution presents a good fit to the
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Fig. 3 The cumulative degree distribution of the networks exhibit a strong pattern accross different
cities and crime types. In all the networks we investigated, the degree distribution exhibited a heavy
tail but only up to a critical value of d = δ. Beyond this point the heavy tail vanishes. On the other
hand, for d < δ almost all the networks had degree distribution in agreement with a power law
with exponent α ≈ 2.1. Straight lines are shown as a guide.

degree distribution. Figure 4 depicts the KS distance from nodes degree cumulative
distribution function to a theoretical power-law distribution. However, it is important
to emphasize that our focus is not to determine whether the degree distribution is
indeed a power law but rather to assess the intervals for the parameter d for which
the degree distribution agrees to or deviates from a heavy tailed.
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The KS test confirmed our hypothesis that the degree distribution for values of
d beyond a certain point have no interesting feature. Based on the test results with
KS, for d > 0.8 we witness an abrupt increase in the distance from the degree
distribution to the power law, in agreement with the results previously found.
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Fig. 4 Kolmogorov-Smirnov distance from the empirical degree distribution to a theoretical power
law for different metropolitan areas and crime types. The KS statistic supports our claim that the
degree distributions of the crimes networks follow a power-law distribution up to a certain value
d = δ.

It is clear that these tests are not sufficient to prove that the networks emerging
for small d are actually the social networks of criminals. In fact, what we are arguing
instead is that the dynamics that produced the spatial distribution of crimes result
from a combination of influences of two complex systems: the social dynamics and
spatial constraints. However, when analyzing the network of crimes in a high res-
olution where the characteristic edge length is very short, our results suggest that
the observed network no longer behaves as a spatial network and starts to display
characteristics observed also in social networks.

5 Conclusion and Future Work

In this paper we looked at the structure of crime in urban environments and demon-
strated that one may be able to use spatial networks [4] to extract social information.
This seems to be quite clear to case of crime. Our results show that in higher spatial
resolutions (less than a mile), network of crimes appear to contain information of
the social structure of the individuals involved in the criminal activity. One questions
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that arrises here is do other spatial networks could also contain social information.
We are currently working on other datasets.

In addition to the contribution of showing that social information may be ex-
tracted from spatial networks, Our work may be used in the decision-making process
of law enforcement officials. We have mentioned earlier that in many instances, the
law enforcement agencies may not have in their datasets social information about
the criminals and that sometimes the information is incomplete. We believe further
work on our approach may lead to the ability of reconstructing these structures. As
is, the work can already help decision making because theories from network sci-
ence can tell us which nodes to focus if we want to disrupt the network; the social
structure of crime can be used as a way to understand where the police should focus.

There are several points that need to be studied further. One of the main points
is the possibility of defining a scaling law for different types of crimes. Our results
appear to show that the social structure emerges at slight different scales depending
on the type of crime. However one needs to understand the other variables that may
play a role in this such as city demographics and city layout, to name a few.

The test on other cities may also be useful. We tested with 3 cities in the USA.
We have not used any variable that is particular to the USA and we have no reason
to believe the approach would not be applicable to other places. However we intend
to apply the same approach to cities in South America and Europe.
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