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Abstract Particle Swarm Optimizers (PSO) have been

extensively used in optimization problems, but the sci-

entific community still lacks proper mechanisms to an-

alyze the swarm behavior during the optimization (ex-

ecution) process. We propose in this paper to assess the

swarm information flow based on particle interactions.

We define the swarm influence graph that captures the

information exchanges between the particles in a given

iteration during the execution of the algorithm. In or-

der to find a fingerprint of the swarm search behavior,

we propose the analysis of this graph by means of its

number of components and its overall structure. We

simulated the PSO algorithm with three different com-

munication topologies and we showed that each topol-

ogy leads to different communication signatures. Also,

we showed that, in the case of a dynamic topology, this
signature is related to the stagnation of the swarm.

Keywords swarm intelligence · network science · par-

ticle swarm optimization · swarm behavior assessment

1 Introduction

Computational Intelligence is a set of nature-inspired

algorithms that can be applied to solve problems in com-

plex and dynamical environments (Engelbrecht 2007).

Some examples of computational intelligence paradigms
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include: artificial neural networks, fuzzy system, evo-

lutionary computation and swarm intelligence. Swarm

Intelligence is a concept that calls for a system in which

actors communicate with each other and act locally on

the environment. The interactions between these indi-

viduals (swarm) lead to the emergence of solutions to

hard problems. Many computational techniques moti-

vated by this behavior constitute what we call Compu-

tational Swarm Intelligence—a set of bio-inspired algo-

rithms based on populations of simple reactive agents.

Among the most famous approaches in swarm tech-

niques, we can mention: Particle Swarm Optimization

(PSO) (Kennedy and Eberhart 1995), Ant Colony Op-

timization (ACO) (Dorigo and DiCaro 1999), Artificial

Bee Colony (ABC) (Karaboga 2005) and Fish School

Search (FSS) (Bastos-Filho et al 2008).

PSO was proposed by Kennedy and Eberhart and

inspired by the social behavior of flocks of birds search-

ing for food (Kennedy and Eberhart 1995). The tech-

nique has been widely used to solve optimization prob-

lems in hyper-dimensional search spaces with continu-

ous variables. The main idea behind the technique refers

to a population of simple reactive agents (particles) that

explore the search space by seeking the best solutions.

Each particle has a position representing a candidate

solution for the problem and stores the best position it

has visited so far. This stored information is used by

the particles to update their position and to navigate

within the search space. Although different equations

may be used to update the particles (Engelbrecht 2007),

they modify their position based mainly on their own

history and on their neighbors information. Therefore,

the way the information exchange happens between the

particles plays an important role in the swarm behavior

during the search (Mendes et al 2004).
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The PSO ability to use different swarm topologies

is an example of the importance of the communication

between particles on the swarm search behavior. This

structure defines the particles that can exchange infor-

mation with each other (i.e. the particle’s neighbor-

hood) and its characteristics have high impact on the

convergence speed and the quality of the solution ob-

tained by the algorithm (Bratton and Kennedy 2007;

Kennedy and Mendes 2002). Less-connected topologies

slow down the information flow given that the informa-

tion is transmitted indirectly through intermediary par-

ticles (Kennedy and Mendes 2002). Conversely, highly-

connected topologies decrease the average distance be-

tween individuals. Consequently, they lead the whole

swarm to move quickly towards the first local optimum

found by any particle. Indeed, these different behaviors

motivated the use of dynamic self-adjustable topologies

to manage the information flow during the execution of

the PSO algorithm (Suganthan 1999; Peram et al 2003;

Janson and Middendorf 2005; Mendes et al 2004; Wang

and Xiang 2008; Oliveira et al 2013).

Although some researchers used the swarm topology

to analyze the swarm behavior, this structure is only a

static representation of the boundaries of the particles

communication (Kennedy and Mendes 2002; Mendes

et al 2004). Moreover, these analyses regarding the im-

pact of the topology on the swarm performance are gen-

erally performed using measures that cannot provide

a comprehensive information about the swarm behav-

ior. In general, researchers use measures that do not

assess the flow of information within the swarm; they

just evaluate simple measures, such as the average dis-

tance between particles, and the evolution of the fitness

of the particles along the iterations. In fact, as we look

further into the literature we conclude that there are

no measures to appropriately assess the communication

process within swarms.

Furthermore, despite the communication between

particles being a fundamental aspect of the swarm be-

havior, many researchers focus solely on the final result

of these particles interactions. For example, many stud-

ies have used the particles properties (e.g. the position

of a particle, the velocity of a particle, etc.) to assess

the swarm behavior (Zhan et al 2009; Zhang et al 2011;

Pontes et al 2011; Zhou and Shi 2011). Although these

approaches perform well with their proposed analyses,

they are actually analyzing the final results (particles

properties) of the particles interactions. For example,

the average distance between particles (the density) in

the search space can be used to infer if the swarm has

stagnated in a certain area. However, all particles in the

same place is actually a result of a lack of diversity in

the particles communication. This approach also loses

important information about the swarm behavior. For

instance, the particles that attracted all the other par-

ticles to a region cannot be distinguished by just eval-

uating the density of particles in this specific region of

the search space. Nevertheless, the particles that have

attracted many other particles to this region present a

higher influence and can be seen as hubs; hence it might

be the case that one can help the entire swarm to escape

from a local minimum by just influencing these partic-

ular hub-particles. In addition to these aforementioned

aspects, one may notice that the approach based on

particle’s properties may be cumbersome because these

properties are dependent on the dimension of the prob-

lem addressed by the swarm. Hence, for example, in

a swarm that is optimizing a function in 1000 dimen-

sions, any particle’s property is also defined in 1000 di-

mensions, and calculations using these properties (e.g.

Euclidean distance to calculate the swarm barycenter)

will be inconvenient.

We propose the analysis of the particles commu-

nication as a way to assess the swarm execution be-

havior because we believe it to be the core mechanism

driving the behavior the swarm. First, in order to have

this analysis, we need to capture the information flows

within the swarm, thus we define the swarm influence

graph, that is a graph (or network) representing the

information exchange between particles in the swarm.

Second, we analyze this network to understand the in-

formation flow; we propose the analysis of the influ-

ence graph by looking at the number of components

present and its structural characteristics. We simulated

the PSO algorithm with three different communication

topologies and we showed that each topology leads to

different communication signatures. Also, we showed

that, in the case of a dynamic topology, this signature

is related to the stagnation of the swarm.

The paper is organized as follows: we review the

Particle Swarm Optimization and some Network Sci-

ence concepts in Section 2. In Section 3 we define the

swarm influence graph and describe the measures to an-

alyze it. In Section 4, the simulation setup and results

are presented. Finally, we present our conclusions and

suggest some future work in Section 5.

2 Background

In this section, we give a brief explanation of the topics

related to this paper. In Section 2.1, PSO is defined

focusing on the topologies used by the swarm. Some

definitions from network science are given in Section

2.2, together with network concepts that are used in

this paper.
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2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic, bio-

inspired, population-based global optimization techni-

que (Eberhart and Kennedy 1995; Kennedy and Eber-

hart 1995). In PSO, each particle i has a position xi(t)

at iteration t within the search space and each posi-

tion represents a possible solution for a d-dimensional

optimization problem. The particles move through the

problem’s search space seeking for the best solutions.

Each particle updates its position according to the cur-

rent velocity vi(t), the best position pi(t) found by itself

and the best position ni(t) found in its neighborhood

during the search so far. The velocity vi(t) and the po-

sition xi(t) of every particle is updated iteratively by

applying Equations (1) and (2), respectively.

vi(t+ 1) = vi(t) + r1c1[pi(t)− xi(t)]

+ r2c2[ni(t) − xi(t)], (1)

xi(t+ 1) = xi(t) + vi(t+ 1), (2)

where r1 and r2 are vectors containing random numbers

generated from a uniform probability density function

within the interval [0,1] at each iteration, for all parti-

cles, and for every dimension. The learning factors c1
and c2 are the cognitive and the social acceleration con-

stants. They are non-negative constants and weigh the

contribution of the cognitive and social components, i.e.

the second and the third terms of Equation (1).

This basic set of particles’ update equations can lead

the swarm to what is called an explosion state. This be-

havior arises because these equations allow the particles

to increase their velocities indefinitely (i.e. they “ex-

plode”). Some approaches have been proposed to over-

come this issue (Eberhart et al 1996; Shi and Eberhart

1998; Clerc and Kennedy 2002). Clerc and Kennedy

developed an approach in which the velocities are con-

stricted by a constant χ, referred as the constriction

factor (Clerc and Kennedy 2002). They determined a

relation based on this factor that avoids the explosion

state, defined according to Equation (3). ϕ is the sum

of the acceleration coefficients c1 and c2.

χ =
2

|2− ϕ−
√
ϕ2 − 4ϕ|

, ϕ = c1 + c2. (3)

This factor was introduced to adjust the influence of the

previous particle velocities to the optimization process.

The final update equation (using χ) for the particle’s

position is defined as:

vi(t+ 1) = χ ·
{
vi(t) + r1c1[pi(t)− xi(t)]

+ r2c2[ni(t) − xi(t)]

}
. (4)

The constriction factor χ also helps to regulate the

exploitation-exploration balance of the swarm (Clerc

and Kennedy 2002; Bratton and Kennedy 2007). This

balance is related to the swarm behavior during the

swarm search. The exploration mode is the ability of

individuals to broadly explore a region in the search

space, while exploitation happens when the search is

focused on a specific area of the search space (Kennedy

and Eberhart 2001).

2.1.1 Particle Swarm Optimization Topologies

The swarm topology defines the boundaries of the par-

ticles communication. The particles only share infor-

mation with others in the neighborhood defined by the

swarm topology. Thus, the flow of information within

the swarm during the search is impacted by the topol-

ogy used by the swarm. Kennedy and Mendes showed

the topology structure influences the flow of informa-

tion among the particles (Kennedy and Mendes 2002).

They demonstrated that the presence of intermediary

individuals slows down the information flow. Conversely,

the information moves faster if more pairs of individuals

are directly connected. Thus, when the average distance

between nodes is too short, the population tends to

move quickly towards the best solution found in earlier

iterations. This behavior implies a faster convergence

to the global optimum in simple uni-modal problems.

However, this fast convergence might force the swarm

to prematurely reach a local optimum and loose di-

versity, specially in multimodal problems (Bratton and

Kennedy 2007). In such cases, communication topolo-

gies with lower number of connections may reach better

results, because the information spreads slowly and the

swarm explores different regions of the search space.

Figure 1 depicts some well-known communication

topologies used in swarms (Bratton and Kennedy 2007).

The global topology was the first topology proposed for

the PSO (Kennedy and Eberhart 1995). In this topol-

ogy, shown in Figure 1(a), all the particles of the swarm

are neighbors of each other, leading to a social memory

shared by the entire swarm. On the other hand, in local

topologies the particles do not share the same neighbor-

hood (Bratton and Kennedy 2007). Consequently, the

social memory is not the same for all the particles and

is topology dependent. The most used local topology
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is the Ring topology (Bratton and Kennedy 2007), in

which each particle has only two neighbors, as depicted

in Figure 1(b). This structure helps to avoid a prema-

ture attraction of all particles to a single location of the

search space given that the information spreads slowly;

this characteristic comes with the caveat of a slow con-

vergence time (Bratton and Kennedy 2007).

These two topologies lead to extreme opposite be-

haviors in the swarm, therefore many efforts have been

made to propose approaches that have fast convergence

while avoiding local minima, such as the ones depicted

in Figure 1(c) and Figure 1(d) (Kennedy and Mendes

2002; Mendes et al 2003; Bratton and Kennedy 2007).

However, all these proposed structures are usually more

appropriate to certain problems (e.g. Global topology

for unimodal problems) (Kennedy and Mendes 2002).

The main reason for this problem dependency is that

these topologies are based on arbitrary structures, nor-

mally static, and consequently they lead to a non-robust

search behavior.

In order to achieve more robustness, some dynamic

topologies were proposed (Suganthan 1999; Peram et al

2003; Mendes et al 2004; Janson and Middendorf 2005;

Wang and Xiang 2008; Godoy and Von Zuben 2009; Mo

et al 2010; Oliveira et al 2013). The structures of these

topologies are not static, they change during the search

process generally based on specific rules. Oliveira et al

(a) Global (b) Ring

(c) Von Neumann (d) Four clusters

Fig. 1 The swarm topology defines the boundaries of the
particles communication. In each network topology, the nodes
are the particles and the links represent the possibility of
information exchange.

proposed an approach that (self-)adapts the commu-

nication scheme based on the swarm state. This dy-

namic topology tries to change the information flow

within the swarm when the particles are stagnating in

the search space. The structure modification is based

on the preferential attachment mechanism present on

the Barabási-Albert model (Barabasi and Albert 1999;

Albert and Barabasi 2002). Each particle attempts to

create a connection with new particles using a roulette

wheel based on the particles’ fitness. We call this topol-

ogy as the Dynamic topology henceforth in this paper.

The self-adaptation in the Dynamic topology is based

on the state of the swarm. The topology changes when

the swarm is stagnating, thus a way to assess the swarm

state is needed. In order to do that, each particle has

a new attribute, called Pkfailures, to determine if the

particle k is improving its fitness during the search pro-

cess. Therefore, if the fitness of the particle k does not

improve after its iterative position update, Pkfailures

is incremented, otherwise Pkfailures is set to zero. The

particle is considered stagnated if Pkfailures reaches a

preset threshold, a parameter of the algorithm.

In the beginning of the algorithm execution, all the

particles are connected based on a structure that al-

lows exploration of the search space. The rationale of

this initial scheme is that it is desirable for the swarm

to explore the search space in the initial stage of the

algorithm run, then in the final steps an exploitation

behavior is preferable (Bratton and Kennedy 2007). At

each iteration, each particle updates its Pkfailures and

when the value reaches the preset threshold of failures,

the particle k searches for better particles to be con-

nected with, as well as to stop being connected to its

current neighbors. This selection of new neighbors is

based on a roulette wheel with a linear fitness-based

ranking. More details about the Dynamic topology can

be found in Oliveira et al (2013).

2.2 Network Science Concepts

The analysis made in this paper is a network-based

approach to capture the information flow within the

swarm and is conducted by modeling the particles’ in-

teractions as networks/graphs. A graph G consists of a

pair [V (G), E(G)], where V (G) is a set of vertices la-

belled 1, 2, ..., n and E(G) is a set of edges (i.e. pairs

of adjacent vertices). Any graph G can be represented

by its adjacency matrix A(G), in which its elements are

defined as:

Aij =

{
1, if vertex i and vertex j are adjacent,

0, otherwise.
(5)
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The spectrum of G consists of the n eigenvalues of

A(G), denoted as λ1, λ2, ..., λn where a λ1 ≥ λ2 ≥ ... ≥
λn. The spectral density of a graph can be defined as

the density of these eigenvalues and can be stated as a

probability density function as follows:

ρ(λ) =
1

n

n∑
j=1

δ(λ− λj), (6)

where n is the number of eigenvalues and δ is the Dirac

function.

Many characteristics of the graph can be assessed by

analyzing the graph spectrum (Cvetković et al 2010).

Actually, the spectrum is considered a fingerprint of the

networks that can be used to characterize them (Doro-

govtsev et al 2003). Farkas et al showed that topological

features of some kinds of graphs (uncorrelated random

networks, the small-world networks, and the scale-free

networks) can be identified by its graph spectral den-

sity (Farkas et al 2001). They also proposed some prac-

tical tools for the identification of the basic types of

random graphs and for classification of real-world net-

works. These tools are based on the extremal eigenval-

ues of the adjacency matrix. Farkas et al showed that

these eigenvalues contain useful information about the

structure of the graph. Depending on the periodicity

of this structure, the principal eigenvalue is detached

from the rest of the spectrum. Thus, they proposed a

quantity named R, defined as:

R =
λ1 − λ2
λ2 − λn

, (7)

that measures the distance of the first eigenvalue from

the main part of ρ(λ).

The R-value can be used in order to distinguish be-

tween some graph-structure features: (i) periodical or

almost periodical; (ii) uncorrelated and non-periodical;

and (iii) strongly correlated non-periodical. For exam-

ple, a regular graph has a structure that is periodical,

conversely a random graph is non-periodical. However,

when the probability in a random graph is not con-

stant and depends on the nodes involved, the result is

a correlated structure. In large systems, R-value of the

sparse uncorrelated random graph converges to a con-

stant, while R-value in the scale-free model decays as a

power-law function of the number of the nodes.

The Laplacian matrix L(G) of a simple graph G is

the matrix D(G) − A(G), where D(G) is the degree

matrix of graph G. Some properties of a graph can

be inferred by using the Laplacian matrix, its eigen-

values v1(G) ≥ v2(G) ≥ ... ≥ vn(G) relate to many of

these properties. For instance, the multiplicity of 0 as

an eigenvalue of L is equal to the number of components

in G (Cvetković et al 2010). Thus, the second-smallest

eigenvalue of L is equal to zero if and only if G is a non-

connected graph. This eigenvalue is called the algebraic

connectivity (or Fiedler value) of G and its magnitude

reflects how well the graph is connected.

3 Assessing Particles Swarm Optimizers

In this section, a structure called the swarm influence

graph is defined in order to capture the flows of in-

formation within the swarm. Moreover, some measures

are described to analyze these flows by analyzing this

proposed structure. In Section 3.1 the aforementioned

structure is defined and the measures are presented in

Section 3.2.

3.1 The Swarm Influence Graph

Although the swarm communication topology defines

which particles can communicate with one another, the

topology only bounds the particles communication ran-

ge. Actually, the information flow changes at each iter-

ation when the particles share information with their

best neighbors. That is, at iteration t, each particle

i only gets information from its best neighbor ni(t).

Thus, a network of information exchanges between par-

ticles in a given iteration can be used to assess the in-

formation flow within the swarm. Therefore, we define

(a) Global topology (b) Ring topology

(c) Dynamic topology (Ex-
ample 1)

(d) Dynamic topology (Ex-
ample 2)

Fig. 2 Examples of the swarm influence graph over the
topology for the three communication topologies. These ex-
amples suggest that the swarm topology impacts the struc-
ture of the influence graph.
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the influence graph as the representation of this net-

work. The elements of the swarm influence graph I ′t at

iteration t are defined as follows:

I ′tij =

{
1, if ni(t) = j,

0, otherwise.
(8)

where ni(t) is the neighbor of particle i at iteration t.

One can observe that the influence graph I ′i is a di-

rected graph by definition. The direction of the edges

is the actual direction of the information exchange be-

tween particles. The simplified influence graph It is de-

fined by removing the edge direction. The elements of

this graph at iteration t are described as follows:

Itij =

{
1, if ni(t) = j or nj(t) = i,

0, otherwise.
(9)

In other words, the simplified influence graph is the net-

work of the particles that shared information between

them at a given iteration. Figure 2 depicts examples of

simplified influence graphs (in bold) over three differ-

ent swarm topologies. These examples suggest that the

swarm topology impacts the structure of the influence

graph. For example, in the case of the Ring and Dy-

namic topologies, there are some sub-graphs, whereas

the Global topology presents only a focal point in the

influence graph. One must notice that the existence of

two particles in the same component does not imply

they share information, actually they only do if they are

directed connected, otherwise they only share common

particles that are indirectly exchanging information.

The swarm influence graph is a forest, that is a

graph in which each connected component is a tree.

The components in the influence graph are related to

the information flows within the swarm. Therefore, the

number of components as well as their structure are as-

sociated with the swarm behavior, and the analyses in

this paper are made on these two aspects.

The simplified influence graph is the one used to an-

alyze the swarm information flow in this paper because

the analysis of the structure of a undirected graph is

simpler than a directed one (e.g. the eigenvalues of the

adjacency matrix of a directed graph may be not real).

Although the direction is removed from the edges in

the simplified graph, there is still implicit information

about the influence of the nodes. This is the case be-

cause of the tree structure of the influence graph and

the fact that every particle must retrieve information

from other particle, once the PSO version being ana-

lyzed is a selfless model, that is, the particles always use

the neighbors’ information to evaluate ni(t) (Kennedy

1997). For example, Figure 3 is a small tree that depicts

a possibly influence graph of three particles, namely a,

b and c.

Fig. 3 The structure of the simplified influence graph still
provides information about the swarm behavior. In this exam-
ple, a simplified influence graph of three particles is derived
from one of the graphs in Figure 4.

The graph in Figure 3 can be the result of the direc-

tion removal process of the follow structures depicted

in Figure 4. One must notice that the structures in Fig-

ure 4(b) and Figure 4(c) can be seen as the same, the

difference between them is just the labels, thus they are

treated as the same. Furthermore, once this is a selfless

model and a particle must retrieve information from its

neighborhood, the structure in Figure 4(a) may also be

understood in the same way as the other ones. There-

fore, when the labels are disregarded, these structures

are the same, as depicted in Figure 5.

(a) (b) (c)

Fig. 4 The possible directed influence graphs of the structure
in Figure 3. Due to the tree structure of the influence graph
and the fact that every particle must retrieve information
from other particle, all of them can be seen as the same.

Fig. 5 The origin of the structure in Figure 3 when the labels
are disregarded. There is no loss of information when the
directions are removed from these trees.
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Such understanding of the swarm influence graph

can be also easily obtained in a tree of two particles,

a case in which there is only one possible configura-

tion: both particles sending and receiving information.

Thus, there is no loss of information when the directions

are removed from these small-sized trees. On the other

hand, bigger trees are more complicated to analyze and

indeed there is loss of information. However, the struc-

ture of these trees still contains informative aspects of

the swarm communication. For example, a particle with

degree k in a tree of the influence graph transmits infor-

mation to at least k− 1 other particles (and at most to

k particles). Thus, the higher is the degree of a particle,

the higher is the impact of this particle on the others.

Therefore, although the influence graph is simplified,

the analysis of its structure still provides information

about the influential role of the particles involved, as

well as the information flow.

3.2 Analyzing the Swarm Influence Graph

In this paper, the swarm influence graph is analyzed

by its number of components and its structure. In Sec-

tion 3.2.1, the use of the number of zero-valued eigen-

values of the Laplacian matrix is discussed as a way to

count the number of information flows. In order to an-

alyze the structure of these flows, the density spectrum

is used and discussed in Section 3.2.2. Once the analy-

sis of the spectrum may be cumbersome, the R-value is

used to assess the information flow and is also discussed

in Section 3.2.2.

3.2.1 The Number of Zero-valued Eigenvalues in the

Laplacian Matrix

The components in the swarm influence graph (i.e. the

sub-graphs in the case of undirected graphs) are groups

of particles that shared information with the same par-

ticles; in such a manner that if two particles are not

in the same component, they have different sources of

information to calculate their velocities. Thus, these

components can be seen as different flows of informa-

tion in the swarm. The number of these flows within

the particles is related to the swarm diversity. For in-

stance, a swarm with few information flows does not

have different sources of information regarding differ-

ent regions of the search space. In this case, the swarm

may contain low diversity, which drives all the particles

towards the same place in the search space. Conversely,

a swarm with many different information flows explores

the search space as a whole because there are many

sources of information. These two distinct search be-

haviors with different number of information flows also

relate to the exploration–exploitation balance in the

swarm. When the particles are exploring broadly a re-

gion in the search space (i.e. exploration search mode),

there are different information flows in the swarm. On

the other hand, when the search is focused in an area

(i.e. exploitation search mode), the swarm diversity is

low.

The multiplicity of “0” as an eigenvalue of the Lapla-

cian matrix of the swarm influence graph is equal to the

number of components in this graph. Thus, in order to

count the number of information flow in the swarm, we

analyze the influence graph with this measure.

3.2.2 The Density Spectrum and R-value

The analysis of the structure of the information flow

within the swarm may elucidate aspects of the swarm

behavior. For instance, although particles in the swarm

can share information with the same particles, there is

the possibility of a particle being more influential than

others in the same flow. This is the case, for example,

when particles transmitting information to many oth-

ers are present in the flow. This is highly related to the

diversity of the swarm since the existence of impact-

ful particles may lead the other particles to the same

region of the search space. Thus, the way information

navigates within the swarm is described by the struc-

ture of the information flow, that impacts the swarm

behavior. Therefore, the analysis of the structure of the

swarm influence graph may explain these intricate be-

haviors of the particles during the search process.

The spectra of eigenvalues of the graph adjacency

matrix is considered a fingerprint of the networks that

can be used to characterize them (Dorogovtsev et al

2003). Thus, we use the density spectrum of the swarm

influence graph to find the fingerprints of the swarm

search behaviors. That is, this analysis can show a sig-

nature of the type of the search being performed by the

swarm. Still, this analysis may be cumbersome because

the density spectrum analysis we perform is mainly a

plot analysis. In general, the spectral density can be

mainly used to assess the behavior of algorithms or to

diagnose the influence of a parameter in the algorithm

performance.

Considering this, we also deployed the R-value since

it can also be used as a way to understand the charac-

teristics of the network. Besides, the R-value is a single

indicator and can be used to control the operation of

the algorithm. It is worthy to mention that the R-value

can be used together with other measures, such as the

evolution of the fitness or the density of particles in a

certain region of the search space.
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4 Simulation Setup and Results

4.1 PSO Setup

In order to assess the proposed methodology, we used

the PSO algorithm to optimize two well known mul-

timodal benchmark functions, named F6 function and

F8 function, that were proposed in 2010 as large-scale

optimization problems (Tang et al 2010). The F6 func-

tion is a single-group shifted and m-rotated Ackley’s

function and F8 function is a single-group shifted and

m-dimensional Rosenbrock’s function. The former is a

multimodal function and the latter is also a multimodal

function very dependent on the initial values. We se-

lected these two different functions to have insights of

the swarm behavior in two distinct scenarios.

In all experiments, we used 1, 000 dimensions and

m equal to 50. We used 200 particles in all simula-

tions. For each simulation trial, we used 300, 000 fit-

ness function evaluations. We performed simulations

for the Global, local and Dynamic topologies. In the

case of the Dynamic topology, the threshold of fail-

ures for the particles was set to Pkfailures = 50. The

particles were updated according to Equation (4) with

c1 = 2.05 and c2 = 2.05 as indicated in (Clerc and

Kennedy 2002), which guarantees no explosion state.

4.2 The Number of Information Flows

The evolution of the number of information flows within

the swarm during the execution of the PSO optimizing

the F6 function is shown in Figure 6(a). It shows the

behavior of this quantity as a function of the number

of iterations for the three considered topologies.

The influence graph in the Global topology is an

one-component star-like graph and keeps its structure

during the whole execution of the algorithm; the num-

ber of zero eigenvalues is constant and equal to one.

Although the value is equal to one in this case, it does

not mean that the influence graph is the same along

the entire process. The best particle of the swarm can

change along the iterations which causes the center of

the star-like topology to change.

Although the Ring topology is static, the influence

graph can present different sub-graphs. One can observe

that the number of information flows varies through the

iterations, but presents a high average value of 40 along

the entire process.

In the Dynamic topology, the algorithm starts with

10 information flows and diminishes in average to 5

information flows along the algorithm execution. One

must observe that the Dynamic topology presents a bal-

anced behavior between the two static approaches.

Figure 6(b) depicts the same analysis on the F8

function. One can observe that the curves are similar

to the ones shown in Figure 6(a). This similarity can

also be seen with all benchmark functions in (Tang et al

2010).

4.3 Analyzing the Structure of the Information Flows

with the Density Spectrum

In order to analyze the eigenvalue spectra of the swarm

influence graph, we divided the analysis in two parts:

static topologies and the Dynamic topology. First, we
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Fig. 6 Number of zero eigenvalues of the swarm influence matrix for Dynamic, Ring and Global Topologies for two different
benchmark functions.
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try to capture the structural characteristics of the static

topologies. Thereafter, we try to analyze the perfor-

mance of the algorithm by its structural characteristics

when the swarm has a Dynamic topology.

The static topology analysis is given in Section 4.3.1

and analysis of the Dynamic topology is shown in Sec-

tion 4.3.2.

4.3.1 Static topologies

The spectral density has the capacity to represent the

frequency of the eigenvalues. Therefore, it is interesting

to evaluate the characteristics of the topologies as a

function of the number of iterations in order to examine

the swarm behavior through iterations.

As the Ring and Global topologies present a well

known behavior in terms of connectivity and conver-

gence, we first evaluated the evolution of the spectral

density of the influence graph as a function of the num-

ber of iterations for these two topologies.

The behavior of the spectral density of the influ-

ence graph along the iterations of the PSO when using

a Global topology is depicted in Figure 9(b). The snap-

shots of the spectral density are from iterations 100,

400, 800 and 1200. One can observe that the Global

topology presents a perfect uni-modal shape. Moreover,

the shape does not vary along iterations.

Figure 9(a) depicts the curve of the spectral density

along the iteration for the PSO with local topology. The

shape is bi-modal, unlike the density spectrum shape

of the swarm with a Global topology. Nevertheless, the

curve also does not change along the iterations.
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Fig. 9 Density spectrum of the swarm influence graph for
(a) the Ring topology and (b) the Global topology (right).
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Fig. 8 The density spectrum of the Swarm Influence Graph from different iterations of the two runs with performances
depicted in Figure 7. The curve for Run #2 is flattened out more quickly than the curve from Run #1.
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4.3.2 Dynamic topology

In order to analyze the information flow of the swarm

and to assess the performance of the proposed approach

by means of the information disseminated in the swarm,

we use two different runs of the PSO algorithm. These

different runs optimize one of benchmark functions used

before (F6 function), but one of these runs gets stag-

nated along the iterations and the other has success.

Figure 7 shows two different trials of the PSO with

the Dynamic topology (Run #1 and Run #2) opti-

mizing F6 function. As seen in the figure, the results

of these two independent runs are quite different. In

Run #1, the algorithm converged, while in the Run #2

the algorithm got stuck in a local minimum. Figure 8

shows evolution of the spectral density of the influence

graph for these two runs for the iterations 50 to 450

with increments of 50. In Run #2, the curve is flat-

tened out more quickly than the curve from Run #1.

Moreover, in both cases, the structure in the first it-

erations is similar to the one when the swarm has the

Global topology. However, one can observe that both

cases present side lobes, which represents a combina-

tion of local and Global behaviors.

Two runs of the PSO with the Dynamic topology

optimizing F8 function are shown in Figure 10. The

fitness values for these two independent runs are dif-

ferent just at the end of the algorithm execution. The

fitness is slightly better for Run #1 when compared to

Run #2.

Figure 11 shows the evolution of the spectral density

of the influence graph for these two runs for the itera-

tions from 50 to 1000, with increments of 50. Again, in

Run #2, the curve is flattened out a little more quickly

than the curve from Run #1. This might explain the

difference in the final fitness. However, one must ob-

serve that the difference in the shape of the curve is

not so evident as in the former case (F6 function).

Hence, although interesting, from our results alone,

we still cannot define a rigid rule between the flattening

rate of the spectral density and the stagnation level of

the swarm. However, the information provided by the
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Fig. 10 The performances of two independent runs of the PSO algorithm with the Dynamic topology optimizing F8 function.
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Fig. 11 Density spectrum of the Swarm Influence Graph from different iterations of the two algorithm executions with
performance shown in Figure 10. Again, the curve for Run #2 is flattened out faster than the curve from Run #1.
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evolution of the spectral density may be used to assess

the influence of a parameter in the swarm performance.

4.4 Using the R-value

Two analysis of the swarm influence graph with the R-

value were made. First, we compare the structure fea-

tures through iterations of the information flow of the

PSO using different topologies. Thereafter, we analyze

the performance of the algorithm by its structural char-

acteristics when the swarm has a Dynamic topology.

4.4.1 Static and dynamic topologies

Figure 12 presents the behavior of R-value of the in-

fluence graph as a function of the number of iterations

for the three topologies considered in this paper. A low

R-value means that λ1 is not detached from the rest of

the spectrum and it can be seen as a consequence of a

periodical structure (Farkas et al 2001).

Because of the star-like behavior of influence graph

for the Global topology, its R-value is constant and

presents the value 1, since the extremal eigenvalues λ1
and λN are opposites, and λ2 = 0.

Both the Ring and the Dynamic topologies present

small R-values, as they produce influence graphs that

display very periodical structures. Again, the Dynamic

topology presented a balanced behavior.

4.4.2 Dynamic topology

In Section 4.3.2, Figure 7 and Figure 10 are runs of the

PSO algorithm with different performances. Here, we

try to assess the performances by means of the infor-

mation disseminated in the swarm using the R-value to

examine if we can learn more about those runs.

Figure 13(a) depicts the evolution of the R-value

through the iterations of the PSO when optimizing the

F6 function. As the plot is confusing to understand, we

use the cumulative R-value, defined as follows:

Rcumi
=

1

i

i∑
j=1

Rj , (10)

where Ri is the R-value at iteration i.

The evolution of the cumulative R-value through it-

erations of the swarm influence graph of the PSO when

optimizing the F6 function using the Dynamic topology

is shown in Figure 13(b). As it is possible to see, the

behaviors of the curves are very different. In the first

iterations, the plots are similar, but at approximately it-

eration 400, the plots diverge. One can observe that the

cumulative R-value is higher for Run #2 and presents

a value that is more similar to the one presented by a

Global topology, which represents a higher chance to

get trapped in a local minima.

Figure 13(c) shows the behavior of the cumulative

R-value through iterations of the swarm influence graph

of the PSO when optimizing the F8 function. Again,

the worst run (Run #2) presented higher values for the

cumulative R-value.

5 Conclusions and Future Work

We proposed the analysis of the swarm behavior in

Particle Swarm Optimizers based on the particles in-

teractions. We defined a network of these interactions

named the swarm influence graph and we assessed the

swarm behavior by analyzing this graph. The novelty

of our approach is that we analyze the fundamental

aspect of the swarm intelligence: the particles commu-

nication. Due to this characteristic, our proposal allows

richer analyses regarding the information flows within

the swarm than the usual approaches. Moreover, the

particles properties (e.g. the position of a particle, the

velocity of a particle, etc) are not needed on this swarm

analysis, thus our approach is not dependent of the

problem dimension.
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Fig. 12 R-value of the swarm influence graph along the iterations when the swarm has Dynamic, Ring and Global Topologies.
The Dynamic topology leads to a balanced behavior between Ring and Global topologies.
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(b) Cumulative R-value of the Influence Graph of the swarm with Dynamic topology optimizing F6 function.
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Fig. 13 Comparison of the R-value and cumulative R-value of the Influence Graph of the swarm with Dynamic topology. We
show the non-cumulative only for the F6 function because the result for the F6 function is similarly confusing and not used
in any analysis. The evolution of the cumulative R-value for runs #1 and #2 diverges at a certain iteration.

In this paper, we proposed the analysis of the swarm

influence graph to assess the information flow in order

to find the fingerprints of the swarm search behavior.

The analyses made on the influence graph consider its

number of components and its structure. More specif-

ically, we used: the number of zero-valued eigenvalues

in the Laplacian matrix to count the number of compo-

nents in the graph; the spectral density to characterize

the network; and the R-value to numerically charac-

terize the network. The first can be used to assess the

number of information flows within the swarm. The sec-

ond provides a signature of the information flows, which

can provide insights on the type of search performed by

the swarm in the last iteration. The third one also re-

turns information about the network structure, but is a

single value that could be used to control the operation

of the algorithm.

We showed that our approach can assess the dif-

ferent search behaviors of the swarm when different

topologies are used. Each topology used by the swarm

does have different signatures in the swarm influence

graph that leads the swarm to behave in distinct man-

ners. We showed that the swarm with the Dynamic

topology has a behavior that is between the two most

used static approaches, the Ring and Global topologies.

Moreover, regarding the Dynamic topology, the simula-

tion results showed that the measures can be used to in-

dicate a possible stagnation process within the swarm.

Again, this can be used to trigger operators, for exam-

ple, to generate diversity in the swarm.

Although we have presented results using measures

from the network science field applied to the PSO algo-

rithm, the main idea presented in this paper is not tech-

nique dependent. We believe this is a first attempt to

show that this measures can be used to assess the per-

formance and to assist the design of swarm intelligence

algorithms. In fact, the analysis of the communication

within the swarm can be done with other swarm intel-
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ligence approaches (e.g. fish school (FSS), ant colony

(ACO), etc.). In ACO, the analysis could be performed

in the pheromone graph. In the FSS, the idea could be

adapted to assess the memory matrix introduced in the

dFSS approach.

As future works, we intend to use these measures to

design high performance dynamic topologies for PSOs

by assessing the information flow within the swarm. We

also aim to develop variations of the swarm influence

graph to recognize different aspects of the swarm com-

munication. Furthermore, we want to perform analysis

on the swarm performance of different swarm intelli-

gence approaches as indicated above.
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