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Abstract—In Particle Swarm Optimizers (PSO), the way
particles communicate plays an important role on their search
behavior influencing the trade-off between exploration and ex-
ploitation. The interactions boundaries defined by the swarm
topology is an example of this influence. For instance, a swarm
with the ring topology tends to explore the environment more
than with the fully connected global topology. On the other hand,
more connected topologies tend to present a higher exploitation
capability. We propose that the analysis of the particles interac-
tions can be used to assess the swarm search mode, without the
need for any particles properties (e.g. the particle’s position, the
particle’s velocity, etc.). We define the weighted swarm influence
graph Itwt that keeps track of the interactions from the last tw
iterations before a given iteration t. We show that the search
mode of the swarm does have a signature on this graph based on
the analysis of its components and the distribution of the node
strengths.

I. INTRODUCTION

Particle swarm optimization (PSO) is a computational
intelligence technique inspired on the social behavior of flocks
of birds and it is widely used to solve optimization problems
with continuous variables [1]. The PSO algorithm consists of
a population (swarm) of simple reactive agents (particles) that
explore the search space by seeking the best solutions. Each
particle has a position that represents a candidate solution
for the problem and keeps the best position visited and the
best position found by its neighbors, then they update their
position based on this information. The swarm communication
topology defines the particle neighborhood, which is the subset
of particles each particle can exchange information with. The
topology defines how the information is shared among the
particles.

The way particles communicate plays an important role
on the swarm behavior [2]. A proxy of this aspect may be
seen, for instance, when the swarm topology is analyzed. The
convergence speed and the quality of the solution obtained
by the algorithm are influenced by the structure of the swarm
topology [3], [4]. Less connected topologies slow down the
information flow given that the information is transmitted in-
directly through intermediary particles [4]. Conversely, highly
connected topologies decrease the average distance between
any pair of individuals. As a consequence, there is a ten-
dency for the whole swarm to move quickly towards local
optima. These two different behaviors are also related to the
exploration-exploitation balance in the swarm. The exploration
mode is the ability of individuals to broadly explore a region

in the search space, while exploitation happens when the
search is focused on a specific area of the search space [5].
The exploration-exploitation balance is not only related to the
information exchange dynamics between particles, but can also
be controlled by the equations used to update the particles
features [3], [6].

However, although some researchers used the swarm topol-
ogy to analyze the swarm behavior, this static structure pro-
vides only the limits of communication [2], [4]. Actually, the
communication between particles changes at each iteration,
since each particle selects the best neighbor to exchange infor-
mation by using the current status in each iteration. Despite the
lack of literature on this kind of analysis, Oliveira et al. pro-
posed to understand the actual flow of information by defining
the swarm influence graph, which is a graph with the nodes
(particles) connected if they share information in a given
iteration [7]. Nevertheless, this definition does not capture
information flow dynamics from all iterations or a window
containing consecutive iterations, but only the current one.

The usefulness of the influence graph relies on the capabil-
ity to assess the influence of leading particles over the other
particles along the iterations. The idea is that once particles
move based on these interactions, the state of the swarm can
be assessed by analyzing the network of these interactions,
i.e. the influence graph. For example, one could assess the
search mode of a swarm by using such analysis. The benefit
of this approach is that properties of the particles (e.g. the
particle’s position, the particle’s velocity, etc.) do not need to
be taken into account in any cumbersome calculation for the
assessment of the search behavior, just the interactions among
the particles [8].

Therefore, we want to propose a network-based approach
to assess the behavior of the swarm. This approach must
allow one to include the history of particles interactions in
order to capture the information flow dynamics of the swarm
as a whole. Thus, we propose the weighted swarm influence
graph I

tw
t that takes into account the last tw iterations before

a given iteration t. We simulate the PSO algorithm with four
different topologies, known by their search modes, and we
show that the swarm mode has a signature on the swarm
influence graph based on the analysis of its components and
its distribution of node strengths.

The paper is organized as follows: we briefly review the
PSO and a simple swarm influence definition in Section II.



We propose, in Section III, the weighted swarm influence with
a window of iterations. The simulation setup and results are
presented in Section IV. Finally, we provide our conclusions
and suggest some future works in Section V.

II. BACKGROUND

In this section, a brief explanation of the topics related
to this paper is given. In Section II-A, the standard Particle
Swarm Optimization is described focusing on the topologies
used by the swarm. The definition of the swarm influence graph
is given in Section II-B.

A. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic, bio-
inspired, population-based global optimization technique [1].
Each particle i contains four vectors in the D-dimensional
space at iteration t: its current position in ~xi, its best position
found so far ~pi, its velocity ~vi and the best position found by its
neighborhood ~ni. Each particle updates its position according
to the current velocity ~vi(t), the best position found by itself
~pi(t) and the best position found by its neighborhood during
the search ~ni(t). The original PSO updates the velocities of
the particles considering the current value for the velocity
of the particles. Clerc and Kennedy [9] observed that this
PSO version can present unstable operation if the parameters
of the equation used to update the velocity of the particles
are not properly selected. Thus, they determined a relation
based on the constriction factor (�) given in Equation (1) that
avoids the explosion state. The constriction factor was designed
to adjust the influence of the previous particle velocities on
the optimization process. This factor also helps to switch the
search mode of the swarm from exploration to exploitation
during the search process. The velocity and the position of
every particle are updated iteratively by applying the follow
equations:
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~vi(t+ 1) = � ·
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~vi(t) + r1c1[~pi(t)� ~xi(t)]

+ r2c2[~ni(t)� ~xi(t)]

�
,

(2)

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1). (3)

where r1 and r2 are random numbers generated by an uni-
form probability density function in the interval [0,1] at each
iteration for each particle for every dimension. The factors c1

and c2 are the cognitive and the social acceleration constants.
They are non-negative constants and weigh the contribution of
the cognitive and social components.

1) Swarm Topologies: The particles only share information
with the ones in their neighborhood in the swarm topology.
Thus, the way the information flows through the particles is
determined by the communication topology used by the swarm.

Some factors on the topology structure influence the flow
of information between the particles. Kennedy and Mendes
showed that when the average distance between nodes is
too short, the population tends to move quickly towards the

(a) Global topology (b) Ring topology

(c) von Neumann topology (d) Four clusters topology

Fig. 1. The swarm topology bounds the particles communication. In the
graphs for each topology, the nodes are the particles and the links represent
the possibility of information exchange.

best solution found in earlier iterations [4] leading a faster
convergence to the global optimum in unimodal problems.
However, this fast convergence might prematurely reach a local
optimum, specially in multimodal problems [3]. This is a case
where communication topologies with fewer connections may
yield better results because the information spreads slowly;
there is a higher chance to explore different regions.

Figure 1 depicts some structures of swarm topologies.
The global topology, shown in Figure 1(a), was the first
communication scheme proposed for the PSO [1]. In this
topology, all particles of the swarm are neighbors, that is,
all particles can be the information spreader to all the other
particles. Thus, the social memory of the particles is shared
by the entire swarm.

Conversely, local topologies are the ones in which the
particles have different subset of neighbors [3]. In this case,
the social memory is not the same for the whole swarm.
The topology depicted in Figure 1(b) is the most used local
topology, called ring topology. The particles in this topology
can only communicate with two other particles. This structure
is known for helping to avoid premature attraction of the
whole swarm to a single spot of the search space, because
the information spreads slowly but with the caveat of a slow
convergence time [3].

The dichotomous behavior of global and ring topologies
suggests to consider structures to balance their strengths and
weaknesses. Actually, many efforts have been made to propose
approaches that present fast convergence while avoiding sub-
optimal points, as depicted in Figure 1(c) and Figure 1(d),
respectively, the von Neumann topology and the four clusters
topology [3], [4], [10]. However, these structures are usually
more suited to specific problems, mostly because they are
normally based on arbitrary static structures [4].

Oliveira et al. [11] proposed a dynamic self-adaptive topol-



ogy based on the preferential attachment mechanism used in
the Barabási-Albert model [12]. The preferential attachment
occurs because each particle tries to find the best particles
to be connected. We call this topology the dynamic topology
throughout this paper.

The adaption of the structure of the dynamic topology is
based on the state of the swarm. In other words, when the
swarm is getting stagnated, the swarm tries to modify the way
the information flows aiming to optimize the search process. In
order to keep track of the swarm state, each particle has a new
attribute, called Pkfailures, which keeps the number of times
a particle k does not improve its fitness. If the particle k does
not improve its position in the current iteration, Pkfailures is
incremented, otherwise Pkfailures is set to zero.

A particle tries to find a new particle to connect to when
Pkfailures reaches a preset value: the Pkfailures threshold.
This preferential attachment is implemented by using a roulette
wheel based on the rank of the particles’ fitness, thus the best
particles have a higher chance to be selected as connections.
More details about the Dynamic topology can be found in [11].

B. The Swarm Influence Graph

The swarm topology defines which particles can commu-
nicate with one another, i.e. the topology only bounds the
particles communication range. Thus, this structure is static
and does not show the actual information flowing through
the connections. The information flow changes at each iter-
ation when a particle selects its best neighbor and retrieves
information from it. Hence, at iteration t, each particle i

gets information from only its best neighbor ni(t), albeit the
swarm topology features many connections among particles.
Therefore, the swarm topology structure is not enough to
capture the information flow within the swarm.

Oliveira et al. [7] proposed the use of the swarm influence
graph to understand the actual information flow. In order to
represent the connections between nodes, the adjacency matrix
is used with the entries (i, j) equals to 1 if the nodes i and j are
connected, and 0 otherwise. Hence, the elements of the swarm
influence graph I

0
t at iteration t can be defined as follows:

I

0
tij =

⇢
1, if ni(t) = j,

0, otherwise. (4)

This definition leads to a directed graph, where the edges rep-
resent the presence of information exchange between particles
with the direction of this exchange. The simplified influence
graph It is defined by removing the edges direction. The
elements of this graph at iteration t is described as follows:

Itij =

⇢
1, if ni(t) = j or nj(t) = i,

0, otherwise. (5)

The influence graph It, as defined, consists of a set of
trees and each tree represents an information flow through the
swarm at iteration t. Figure 2 depicts examples of influence
graphs (in bold) over three different swarm topologies. These
simple examples suggest that the structure of the influence
graph is very dependent of the swarm topology. For instance,
one can observe that there are some sub-graphs in the ring
and dynamic topologies, whereas the global topology presents
a focal point in the influence graph.

(a) Global topology (b) Ring topology

(c) Dynamic topology

Fig. 2. Examples of influence graphs over the topology for the three
communication topologies. All the edges are the ones from the swarm
topology, the bold edges are the actual edges of the influence graph in a
certain iteration. These simple examples suggest the structure of the influence
graph is very dependent of the swarm topology.

One may notice that the influence graph, as defined,
captures only the instantaneous communication between par-
ticles at iteration t. Therefore, the information exchange that
happened in past iterations are not present in this graph. For
instance, the structure of the influence graph of the global
topology is static along the iterations [7]. This particular
behavior is result of the fact that only one particle spreads
information at each iteration1, which always leads to star-
like structures with possibly different focal nodes at different
iterations.

However, Oliveira et al. [7] showed that characteristics
of the way information is transmitted within the swarm can
be assessed by using the simple version of the influence
graph. Although this definition enlighten some features of the
information flow in the swarm depending on its topology, the
presence of the social memory history in the swarm influence
might explain some more intricate flow features. For example,
the formation of historical information flows influencing the
swarm behavior cannot be assessed with this simple definition
of the influence graph.

III. THE SWARM INFLUENCE GRAPH WITH HISTORY

The record of all the information exchanges between the
particles during the algorithm execution until an iteration t may
be evaluated by summing up the adjacency matrices from the
influence graphs for all iterations before t. The matrix resulting
from this sum is a weighted influence graph I

w
t . This matrix

can be expressed as follows:

I

w
t =

tX

i=1

Ii. (6)

1Actually two particles spread information at each iteration in the global
topology: the best particle gbest in the swarm and the best neighbor of gbest.
Nevertheless, the swarm influence graph still is a star-like structure.



Given that the edges of the simplified swarm influence
graph It are undirected, Iwt is also undirected. Iwt is a weighted
graph where its edges’ weights Iwtij are equal to the number of
the times two particles i and j exchanged information during
the algorithm execution. Thus, the maximum value an edge
weight can be is 2t; this happens when two particles are always
their best neighbors. The reason the weighted influence graph
is created based on the undirected graph It and not on the
directed I

0
t is due to the fact that It is shown to have enough

information to capture features from the information flow [7].
Moreover, the analysis of the structure of a undirected graph
is simpler than a directed one.

The analysis of the I

w
t allows one to understand the

influence of particles on each other during the whole history of
the swarm. This social memory is surely related to the particles
behavior until the iteration t. However, a question that may
arise is the difference between the influence of an information
exchange of two particles in the beginning of the process and at
the iteration t. In order to allow the analysis of this dynamics,
the weighted influence graph at iteration t with window tw is
defined as follows:

I

tw
t =

tX

i=t�tw+1

Ii, with t � tw > 0. (7)

That is, I

tw
t is the network of particles that communicated

at most tw iterations before the iteration t. The weight of a
connection between particles is equal to the number of times
two particles shared information. I

tw
t is equal to I

w
t when

tw = t, and I

tw
t = It when tw = 1, hence the definition with

the interval window is more general, and the one used in the
paper.

The size of the interval window tw changes the analysis
of I

tw
t . The lower the value of tw, the shorter the social

memory being analyzed. A short social memory may represent
only a fleeting glimpse of the information flow. Thus, the state
of the flow captured using a small tw may be only transitory.
On the other hand, a large social memory may lead to analyses
that takes into account remote particles interactions, which may
not affect the current swarm state.

In this paper, the weighted influence graphs are analyzed
using the heat map of the edges weight, the node strength
(i.e. the sum of all edges weight connecting a node [13])
distribution and the impact of the removal of the edges on the
graph components. More details on these analyses are given
in Section IV-B.

IV. SIMULATION SETUP AND RESULTS

In order to assess the proposed methodology, the PSO
algorithm was run with the parameters presented in Sec-
tion IV-A. The result and some preliminary analyses are given
in Section IV-B.

A. PSO Setup

The PSO algorithm was run to optimize a well known
multimodal benchmark function, named F6 function [14].
The F6 function is a shifted, single-group m-rotated and m-
nonseparable Ackley’s function with global optimum x

? = o,
F6(x?) = 0. In all experiments, the number of dimensions

was set to 1000 and m equals to 50. The swarm contained
100 particles in all simulations. The simulations were made
with the global, ring, von Neumann and dynamic topologies.
In the case of the dynamic topology, the threshold of failures
for the particles was set to Pkfailures=50. We chose this
value since it provided the best results for the entire set of
benchmark functions. The particles were updated according to
the Equation (2) with c1 = 2.05 and c2 = 2.05 as indicated in
[9], which guarantees the algorithm to converge.

B. Results

Figure 3 depicts the weighted swarm influence graph with
tw = t and t = 1000 for each topology considered. In
the graph, the size of the nodes and the edges width are
proportional, respectively, to the node strength and to the
edges’ weight. Some features for each graph may be already
captured from these figures. The dense graph related to the
global topology suggests a swarm behavior where all particles
are exchanging information to all others. The presence of
many nodes with large sizes, in the case of global and
ring topologies, indicates the presence of great information
spreaders in swarms with these topologies. Deeper analyses
regarding these aspects are made using heat maps and the
node strength distribution, given in Section IV-B1 and Section
IV-B2, respectively.

In order to capture the existence of different information
flows within the swarm, the weighted swarm influence graph
is analyzed by removing its weak connections. Figure 4
depicts the impact of this removal regarding the von Neumann
topology. This deletion of edges with weight lower than an
increasing threshold shows the presence of nodes that are more
tightly connected. These components (i.e. the sub-graphs in

(a) Global topology (b) Ring topology

(c) Dynamic topology (d) von Neumann topology

Fig. 3. The weighted swarm influence graphs (tw = t = 1000) are also very
dependent of the used topology. The structure for the global topology (a) is
denser than the other ones, and the size of the nodes (node strength) in the ring
and von Neumann topologies does not change much, which hints to absence
of hubs.



the case of these undirected graphs) may be seen as different
flows of information in the swarm. The analysis of this aspect
is given in Section IV-B3.

(a) (b)

(c) (d)

Fig. 4. The removal of low weighted edges shows the substructures within
the information flow in the swarm. The weighted influence graph for the von
Neumann topology in Figure 3(d) is destroyed by removing the edges with
weight bellow (a) 50% of the highest edge weight, (b) 65%, (c) 75% and
(d) 87.5%. The different colors are related to different components with more
than one node, the size of each node is proportional to the node strength, as
well as, the edges width are proportional to the edges weight.

1) Heat maps: The strength of the ties in the influence
graph may be seen in the heat maps of the graph edge weights
in Figure 5. Due to space limitation, only the influence graph
with time window equals to 1000 and 50 are shown. The ring
topology and the von Neumann topology show patterns due
to the rules that create the swarm structure (for instance, in
the ring topology, the particle i communicates only with the
particles with indexes i + 1 and i � 1), thus these patterns
are arbitrarily rule dependent. The color of each cell in the
heat maps is linked to the strength of the ties between the
particles. Thus, reddish cells are associated to strong ties while
the blueish ones are related to weak ties.

The whole history of the information exchange in the
swarm is taken into account when the window size is equal
to 1000, once the snapshot is taken at the 1000th iteration.
Some remarkable features are found on the heat maps of
each influence graph for each swarm topology. In the case
of the dynamic topology, although the structure changes along
iterations, the initial topology has a huge influence in its social
memory. This influence may be seen when one compares the
patterns found in the ring topology and in the dynamic one.
This comparison also allows one to visualize the presence of
the new ties created during the self-adaptation process of the
topology.

Although the ring and the von Neumann topologies show
similar patternn, they differ in the intensity of their ties. The
information exchange in the ring topology is more intense than
in the von Neumann topology. This high intensity happens due

to the small number of particles that one particle can commu-
nicate with in the ring topology, which leads to information
exchange with only few particles.

Interestingly, none of these three aforementioned heat maps
suggests the presence of particles acting as huge information
spreader or a hub. On the other hand, the heat map of the
global topology shows some columns with high intensity that
are particles acting as actual hubs spreading information to the
rest of the particles. Another characteristic of this heat map is
the higher density when compared to the others. This high

(a) Window size equals to 1000.

(b) Window size equals to 50.

Fig. 5. The heat map of the edges weight in the influence graph with windows
size equals to (a) 1000 and (b) 50. Each column/row is a particle and the
cell color is the strength of the ties between the particles. The diagonal seen
in the ring topology is also seen in the dynamic topology, but this structure
is lost when the window size is low.



density suggests a more dense influence graph, which means
that many particles share information to many others, despite
the presence of hubs.

The window size adjusted to 50 presents a slightly different
picture of the swarm communication. The high density found
in the global topology with window size equals to 1000
changes to a more sparse matrix. However, this heat map still
shows clearly the presence of a big hub and some other small
hubs as well. The comparison between these two window sizes
suggests that different particles acting as a hub appears along
the execution of the algorithm.

In the dynamic topology, the traces from the initial topol-
ogy are not noticeable. That is, the more recent social memory
does not include information exchanges through the links from
the ring topology (initial topology), rather the communication
is made using the new ties created during the self-adaptive
process of the dynamic topology.

The heat maps of the ring and the von Neumann topologies
show that the particles tend to have a preferable neighbor when
the window size is small, that is, when the social memory is
considered short. In the ring topology, this preference tends to
create different flows of information. These flows can be seen
as the contiguous lines (i.e. without low intensity values) in
the heat map. The same feature is harder to be seen in the von
Neumann topology due to the emergence of a more complex
pattern, but low intensity values are still possible to be seen.

2) Nodes strength: The distribution of the strength of the
nodes in the swarm influence for each swarm topology is
shown in Figure 6. The plots are only for the influence graph
with the window size equals to 1000. The x-axis limits are the
same for all plots in order to have a comparison among the
distributions.

The distributions for the global topology and the dynamic
topology show the presence of nodes that share much infor-
mation in the swarm, that is, there are some particles that are
really stronger than the rest of the particles. However, these

Fig. 6. The distribution of the strength of the nodes in the influence graph
indicates the presence of strong nodes (hubs) in the global topology and in
the dynamic topology.

information spreaders are not present in the ring topology and
in the von Neumann topology. In these cases, the distribution is
more concentrated in a certain region and the distribution tail is
not as long as the global and dynamic topology. Still, although
the distributions of the von Neumann and the Ring topologies
are approximately similar in shape, the von Neumann topology
presents a bigger interval strength of the nodes when compared
to the ring topology. This last comparison is better seen in
the complementary cumulative distribution function plot in
Figure 7.

Fig. 7. The complementary cumulative distribution function of the nodes
strength shows that the probability of a node being strong decays faster in the
Ring topology and in the von Neumann topology than in the other topologies.

The complementary cumulative distribution function
p(X � x) describes the probability that a node will be found
to have strength more than or equal to a value x. For example,
although the ring and the von Neumann topologies have similar
curves, the von Neumann topology has a slightly longer tail,
which means that a hub is slightly easier to happen in this
topology than in the Ring topology. Yet, in both topologies,
the probability of a node being strong decays faster than in
the dynamic and the global topologies. This slow decay in the
probability is a consequence of the presence of hubs in the
information flow, a feature which is related to less diversity.

Figure 8 presents a comparison of the nodes strength
distributions of the influence graph with the time window size
equals to 10, 100, 500 and 1000 for each swarm topology
considered. This comparison shows that the presence of hubs
in the global topology is independent of the social memory
size, that is, this topology allows the emergence of influential
particles in a short time. Conversely, the curves for the dynamic
topology only show hubs when the window is large. These
features make both topologies prone to have particles as huge
information spreaders. However, the dynamic topology takes
longer to elect this particle than in the global topology, a
behavior that may help the swarm to not stagnate in sub-
optimal points.

3) The impact of edges removal: The decrease of the
largest component size when edges are removed from the
swarm influence graph for each swarm topology is shown in
Figure 9(a). The impact of this removal on the number of the



Fig. 8. The complementary cumulative distribution function of the nodes
strength in the swarm influence graph with different window sizes. The curve
colors/shapes are related to the swarm topology. The tail of the global topology
curve is longer in all scenarios, indicating the presence of hubs independent
of temporal constraint.

components in the graph is shown in Figure 9(b). In order
to make the plots understandable and due to space limitation,
only the window sizes equal to 10, 50, 100, 500 and 1000 are
presented, which are represented by different colors/markers.
The normalized weight is the weight value divided by 2tw, i.e.
the highest possible weight in the graph. The giant component
size is equal to the number of nodes in the largest component
divided by the total number of nodes. In the plots, the markers
are the actual values of the normalized weights, that is, the
curves just connect the markers and the lines only help to
understand the tendency.

The impact of the edges removal on the size of the greatest
flow of information in the case of the global topology does
have similar behavior with different window sizes. The giant
component is completely destroyed in few steps. This behavior
in conjunction with the rapidly increasing of the number
of components during this removal suggests the absence of
different flows of information and the presence of the only
one flow, the greatest one. This characteristic indicates that the
global topology does not have high diversity, thus the swarm
is guided by the same information, which leads to the particles
moving towards the same place. This behavior of the swarm
is related to the exploitation search mode.

On the other hand, the curves in the von Neumann topology
and the ring topology cases for the giant component size have
distinct behaviors with different window sizes. The greatest
information flow in both topologies does not contain all the
particles when the window size is equal to 10, 50 and 100.
This behavior is in agreement with the heat maps for these
topologies with a short social memory, that is, when the history
is from a short period of the past iterations, the swarm has
different flows of information. The von Neumann topology
does have, however, longer greatest information flow than the
ring topology for window size equals to 50 and 100, which
suggests that the von Neumann topology tends to have less
diversity in flows of information than the ring topology.

In the case of window size equals to 500 and 1000,
the curves regarding the giant component size for the ring
topology and von Neumann topology shows that the greatest
information flow includes all the particles. However, the edges
removal leads to a faster destruction in the case of the von
Neumann topology than in the ring topology case, which
points again to a less diversity in the von Neumann topology.
This fast destruction in both cases must be analyzed with the
growth of number of components. For instance, in relation
to the global topology, the number of components increases
quickly when the edges are removed. However, in the case
of the other topologies, the quantity of components increases
slowly. Therefore, the giant component in these topologies
is destroyed in many components and not in many nodes,
which indicates that the swarms with these topologies contain
many different flows of information (i.e. different sub-swarm
searching independently within the search space).

(a) The size of the giant component.

(b) The number of components.

Fig. 9. The impact of the edges removal on the size of the giant compo-
nent (a) and on the growth of the number of components (b) depends on
the network structure. The different curves (the different colors/markers in the
plot) are related to the time window size of the influence graph.



The dynamic and the von Neumann topologies have similar
behaviors when the window is set to 500 and 1000. However,
as mentioned before, the greatest information flow in the
swarm with the von Neumann topology does not contain all the
particles when the window is equal to 10, 50 and 100. On the
other hand, the Dynamic topology, allows the swarm to have
a long information flow with all the particles with these time
window sizes. This phenomenon suggests that the dynamic
topology is not as diverse as the von Neumann topology when
the social memory is short.

V. CONCLUSION AND FUTURE WORKS

We defined a network-based approach to represent the
particles interactions, namely the weighted swarm influence
graph I

tw
t , and we showed that the search behavior in PSO

can be assessed by analyzing the properties of this graph.
The benefit of this approach is that we do not use any
particles properties (e.g the position of a particle, the velocity
of a particle, etc) for the analysis, and we can have richer
assessments in terms of information about the flows within
the swarm than the usual approaches.

The analysis we performed was concerned with strongly
connected components and the distribution of the nodes
strength in influence graphs. We associated a component in the
graph to an information flow in the network, further we related
the number of these components with the swarm diversity.
Moreover, we used the nodes strength as an indication of
the presence of influential particles in the swarm, that is also
related to the diversity in the information flow.

The hub analysis of swarm influence graph demonstrated
that in a swarm with the global topology, there is a strong
presence of particles as large information spreaders, a feature
related to less diversity. These strong hubs also appeared in
the dynamic topology, but not in the von Neumann and the
ring topologies. In this case, the characteristic distinguishing
the global and the dynamic topologies is that the former allows
the emergence of influential particles in a short time, while the
latter takes longer to elect a particle as a hub. This delayed
behavior may help the swarm to not stagnate in local optima.

The analysis on the influence graph edge weights showed
that there exists only one information flow in a swarm with
the global topology, a behavior associated to the exploitation
search mode. Conversely, in the von Neumann, ring and
dynamic topologies, the swarms contain different flows of
information, which drives the swarm to explore distinct places
in the search space, a feature related to the exploration search
mode. The difference between these two topologies is that the
ring topology has higher diversity in terms of information flow
than the von Neumann topology, and the latter tends to have
a more diverse swarm than the dynamic topology.

For future works, we envisage a network-based framework
to assess the swarm behavior in different swarm intelligence
techniques. This framework might give us comprehension on
the intricate interactions within the swarm, that could lead us,
for example, to more general descriptions and classifications of
swarm techniques. However, our definition is still not generic
enough, an example of this fact is that, even if c2 = 0 in
Equation (2) (i.e. particles do not communicate) – a scenario
that could happen when c1 and c2 are adaptive – the influence

graph does have ties between the particles. Therefore, our next
steps are towards an influence graph definition that allows a
more generic and less descriptive analysis.
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