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Abstract Particle Swarm Optimizers (PSOs) have been widely used for optimiza-
tion problems, but the scientific community still does not have sophisticated mech-
anisms to analyze the behavior of the swarm during the optimization process. We
propose in this paper to use some metrics described in network sciences, specifi-
cally the R-value, the number of zero eigenvalues of the Laplacian Matrix, and the
Spectral Density, in order to assess the behavior of the particles during the search
and diagnose stagnation processes. Assessor methods can be very useful for design-
ing novel PSOs or when one needs to evaluate the performance of a PSO variation
applied to a specific problem. In order to apply these metrics, we observed that it
is not possible to analyze the dynamics of the swarm by using the communication
topology because it does not change. Therefore, we propose in this paper the def-
inition of the influence graph of the swarm. We used this novel concept to assess
the dynamics of the swarm. We tested our proposed methodology in three different
PSOs in a well-known multimodal benchmark function. We observed that one can
retrieve interesting information from the swarm by using this methodology.

1 Introduction

Computational Swarm Intelligence (SI) is a set of bio-inspired algorithms based
on populations of simple reactive agents. They interact locally among themselves
in other to generate global patterns that can be used to solve complex tasks [6].
Among the most famous SI algorithms, we can cite: Particle Swarm Optimization
(PSO) [9], Ant Colony Optimization (ACO) [5], Artificial Bee Colony (ABC) [8]
and Fish School Search (FSS) [2].

Marcos A. C. Oliveira-Júnior and Carmelo J. A. Bastos-Filho
University of Pernambuco, Brazil e-mail: carmelofilho@ieee.org

Ronaldo Menezes
Florida Institute of Technology, USA e-mail: rmenzes@cs.fit.edu

1



2 Marcos A. C. Oliveira-Júnior, Carmelo J. A. Bastos-Filho and Ronaldo Menezes

PSO has been widely used to solve optimization problems in hyper-dimensional
search spaces with continuous variables. PSO was first proposed by Kennedy and
Eberhart in 1995 [9], inspired by the social behavior of flocks of birds aiming to
find food. In PSO, each particle in the swarm represents a candidate solution for the
optimization problem. During the algorithm execution, each particle adjusts its po-
sition based on the current position, the current velocity, the best position achieved
by itself during the search process so far and the best position obtained by the best
particle in its neighborhood. This neighborhood is defined by the swarm commu-
nication topology, which defines which particles can exchange information among
each other. The topology influences on the convergence velocity and on the quality
of the solution obtained by the algorithm [3, 10]. Less connected topologies slow
down the information flow, since the information is transmitted indirectly through
intermediary particles [10]. Conversely, highly connected topologies decrease the
average distance between any pair of individuals. As a consequence, there is a ten-
dency for the whole swarm to move quickly toward the first local optimum found
by any particle, when the average distance between particles is too short. In order
to overcome this trade-off, some dynamic self-adjustable topologies were proposed
aiming to manage the information flow during the execution of the PSO [13][12].
Furthermore, Oliveira-Júnior et al. [12] proposed one dynamical topology based on
the preferential attachment mechanism of scale-free networks [1].

Nevertheless, the analyses on the influence of the communication topology in
the algorithm performance generally are performed by using tools that can not pro-
vide comprehensive information about the swarm behavior. In general, researchers
use metrics that do not assess the flow of information within the swarm; they just
evaluate simple metrics, such as the average distance between particles, and the evo-
lution of the fitness of the particles along the iterations. In fact, as we look further
into the literature we conclude that there are no tools to appropriately assess the
communication processes within swarm.

Network Science is the study of the theoretical foundations of network structure,
its dynamic behavior, and the application of networks to many subfields [11]. There
are some networks that present some specific characteristics, such as Scale-Free [1]
and Small-World Networks [15]. In order to classify networks based on their struc-
tural features, many metrics have been developed [7]. In this paper, we propose to
use these metrics to analyze the communication behavior of the particles during the
search and diagnose stagnation processes. We also present the concept of influence
graph of the swarm and we use this concept to assess the communication among the
particles.

The paper is organized as follows: we briefly review the Particle Swarm Opti-
mization and some Network Science metrics in Section 2. In Section 3, the simula-
tion setup and results are presented. Finally, we provide our conclusions and suggest
some future works in Section 4.
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2 Background

2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic, bio-inspired, population-based
global optimization technique [9]. In PSO, each particle i has a position at time t
within the search space xi(t) and each position represents a possible solution for a
d-dimensional optimization problem.

The particles “fly” through the search space of the problem seeking best solu-
tions. Each particle updates its position according to the current velocity vi(t), the
best position found by itself Pbesti(t) and the best position found by the neighbor-
hood of the particle i during the search so far Nbesti(t).

The velocity and the position of every particle are updated iteratively by applying
the following update equations:

vi(t +1) = vi(t)+ r1c1[Pbesti(t)−xi(t)]+ r2c2[Nbesti(t)−xi(t)], (1)

xi(t +1) = xi(t)+vi(t +1), (2)

in which r1 and r2 are random numbers generated by an uniform probability
density function in the interval [0,1] at each iteration for each particle for every
dimension. The learning factors c1 and c2 are the cognitive and the social acceler-
ation constants. They are non-negative constants and weight the contribution of the
cognitive and social components, i.e. the second and the third terms of Equation 1.

Clerc [4] observed that the original PSO can operate in unstable states if the
parameters of Equation 1 are not selected properly and determined a relation based
on the constriction factor (χ) that avoids the explosion state. χ is defined according
to the following equation:

χ =
2

|2−ϕ −
√

ϕ2 −4ϕ |
, ϕ = c1 + c2. (3)

The mechanism to update the velocity proposed by Clerc is presented in Equa-
tion 4.

vi(t +1) = χ · {vi(t)+ r1c1[Pbesti(t)−xi(t)]+ r2c2[Nbesti(t)−xi(t)]}. (4)

The constriction factor was designed to adjust the influence of the previous par-
ticle velocities on the optimization process. It also helps to switch the search mode
of the swarm from exploration to exploitation during the search process.
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2.1.1 Particle Swarm Optimization Topologies

The way the information flows through the particles is determined by the communi-
cation topology used by the swarm. The topology defines the neighborhood of each
particle, i.e. the subset of particles which the particle is able to communicate with.

There are some factors on the topology structure that influence on the flow of
information between the particles. Kennedy and Mendes have shown that when the
average distance between nodes are too short, there is a tendency for the popula-
tion to move quickly toward the best solution found in earlier iterations [10]. For
simple unimodal problems, it usually implies in a faster convergence to the global
optimum. However, this fast convergence might be premature in a local optimum,
specially in multimodal problems [3]. In this case, communication topologies with
lower number of connections may reach better results [3].

The Global topology, as known as Gbest , was the first topology proposed for the
PSO [9]. In the Gbest , all the particles of the swarm are neighbors, as shown in
Figure 1(a). Thus, the social memory of the particles is shared by the entire swarm.

On the other hand, in local topologies, each particle only shares information with
a subset of the swarm. Therefore, the social memory is not the same for the whole
swarm. The most used local topology is the Ring topology [3], where each particle
has only two neighbors, as depicted in the Figure 1(b). This structure helps to avoid
a premature attraction of all particles to a single spot of the search space, once the
information is spread slowly, but with the caveat of a slow convergence [3].

(a) Global topology (b) Ring topology

Fig. 1 Most-used particle swarm optimization communication strategies are based on global and
local topologies.

These two topologies lead to extreme behaviors in the swarm, therefore many
efforts have been made to propose approaches that present fast convergence while
avoiding local minima [3, 10]. Some topologies that can self-adapt dynamically
were proposed recently [13, 12], including the approach proposed by Oliveira-
Júnior et al. [12], which is based on the preferential attachment mechanism present
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on the Barabási-Albert model [1]. In this case, each particle tries to find better par-
ticles to create connections with. We will call this topology as dynamic topology.

The Dynamic topology is based on the state of the swarm and it tries to change
the information flow only when it is necessary. Because of this, a new attribute,
called Pkfailures, was included in each particle to determine the number of times a
particle k does not improve its fitness. If it reaches a pre-determined threshold, then
the particle is considered stagnated. If the particle k does not improve its position in
the current iteration, Pkfailures is incremented, otherwise Pkfailures is set to zero.

The Dynamic topology is initialized as a ring topology. At each iteration of the
PSO, all particles update their Pkfailures and when a preset threshold of failures is
reached, the particle searches for better particles to follow, and to stop following as
well. This selection of new neighbors is based on a roulette wheel with a fitness-
based rank. More details about the dynamic topology can be found in [12].

2.2 Network Science Metrics

The networks discussed in this paper are modeled as graphs. A graph G consists of
a pair [V (G),E(G)] where set V (G) set of vertices and E(G) is a set of edges. Any
undirected unweighted graph G can be represented by its adjacency matrix A(G), in
which the non-diagonal entries (i, j) are equal to “1” if the nodes i and j are adjacent
(connected), or “0” otherwise. In A, the entries (i, i) are always equal to “0”, because
a node cannot be connected to itself. A diagonal matrix, which contains information
about the degrees of the nodes, is named Node Degree matrix, D(G). The diagonal
entries (i, i) are equal to the degree of the nodes Di. The Laplacian matrix of a graph
G, represented as L(G), is L(G) = D(G)−A(G).

Many properties of a graph can be inferred by using the Laplacian matrix. The
eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn of L are important because they relate to many of
these graph properties. Given that L is symmetric, all eigenvalues are real and non-
negative. One of the first properties that arises from the Laplacian eigenvalues is
the number of components in a graph. The number of zero eigenvalues corresponds
exactly to the number of independent sub-graphs in the graph.

The second-smallest eigenvalue λ2 of L is called the algebraic connectivity (or
Fiedler value) of G. The magnitude of this value shows how well connected the
graph is. Moreover, the value is greater than 0, if and only if, G is a connected
graph.

The Adjacency matrix can also be used to provide information about the structure
of the graph. The spectrum of a graph can be defined as the set of eigenvalues of its
Adjacency matrix. Assuming this, the spectral density of a graph can be defined as
the density of these eigenvalues and can be stated as a probability density function
shown in Equation 5.

ρ(λ ) =
1
N

N

∑
j=1

δ (λ −λ j). (5)
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Farkas et al. [7] showed that topological features of some kinds of graphs (un-
correlated random networks, the small-world networks, and the scale-free networks)
can be identified by its graph spectral density. They also have presented some practi-
cal tools for the identification of basic types of random graphs and for classification
of real-world graphs [7]. These tools are based on the extremal eigenvalues of the
Adjacency matrix. The extremal eigenvalues contain useful information of the struc-
ture of the graph. The principal eigenvalue is detached from the rest of the spectrum
depending on the periodicity of the graph structure. Thus, they proposed a quantity
named R, defined as:

R =
λ1 −λ2

λ2 −λN
, (6)

that measures the distance of the first eigenvalue from the main part of ρ(λ ).
The R-value can be used in order to distinguish between some graph-structure

features: (i) periodical or almost periodical (Small world); (ii) uncorrelated and non-
periodical; and (iii) strongly correlated non-periodical (Scale Free).

3 Simulation Setup and Results

3.1 PSO Setup

In order to assess the proposed methodology, we used a multimodal benchmark
function, named F6 function, that was proposed in [14] as a large scale optimization
problem. The F6 function is a single-group shifted and m-rotated Ackley’s function.
In all experiments, we used 1,000 dimensions and m equal to 50. We used 200 par-
ticles in all simulations. For each simulation trial, we used 300,000 fitness function
evaluations. We performed simulations for the global, local and dynamic topologies.
In the case of the dynamic topology, the threshold of failures for the particles was
set to Pkfailures =50. The particles were updated according to the Equation 4 with
c1 = 2.05 and c2 = 2.05 as indicated in [4].

3.2 The Swarm Influence Graph

Although the communication scheme defines which particles can communicate with
one another, this does not mean that a particle actually obtains useful information
from all the connected particles. Here, we define useful information as the instanta-
neous use of the Nbesti(t) by the neighbor particle. Since we aim to assess the flow
of useful information, we propose here the concept of influence graph. The influ-
ence graph consists of a set of trees and each tree represents an information flow
through the swarm. Therefore, the number of trees and their structures have a great
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significance on the swarm behavior. As an example, lots of trees means that there
are many different and independent information flows.

The influence graph is defined at each iteration considering only the active links,
i.e. the ones in which a useful information was provided. One can observe that the
influence graph Ii (where i represents an iteration of the execution) is a directed
graph by definition. However, in this paper, the edge direction is removed from the
graph in order to simplify the analysis and to make use of some available metrics.

Figure 2 depicts examples of influence graphs (in bold) over the three different
swarm topologies studied in this paper. One can observe that there are some sub-
graphs for the Ring and Dynamic topologies, whereas the global topology presents
a focal point in the influence graph.

(a) Global topology (b) Ring topology (c) Dynamic topology

Fig. 2 Examples of influence graphs over the topology for the three communication topologies.

3.3 Number of Zero Eigenvalues of the Laplacian Matrix

The number of independent components in the influence graph means the number
of information flows within the swarm at the current iteration. As mentioned in
Section 2.2, the number of zero eigenvalues of the Laplacian matrix corresponds to
the number of sub-graphs in the graph. Therefore, the number of eigenvalues of the
Laplacian matrix with value equal to zero indicates the connectivity of the Influence
matrix. Figure 3 shows the behavior of this quantity as a function of the number of
iterations for the three considered topologies.

The Influence graph in the Global topology is an one-component star-like graph
and keeps its structure during the whole execution of the algorithm; the number of
zero eigenvalues is constant and equal to one. Although the value is equal to one
in this case, it does not mean that the influence graph is the same along the entire
process. The best particle of the swarm can change along the iterations which causes
the center of the star-like topology to change.
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Fig. 3 Number of zero eigenvalues in the Influence matrix for Dynamic, Ring and Global Topolo-
gies.

Although the Ring topology is static, the Influence matrix can present different
sub-graphs. One can observe that the number of information flows varies through
the iterations, but presents a high average value of 40 along the entire process.

In the Dynamic topology, the algorithm starts with 10 information flows and
diminishes in average to 5 information flows along the algorithm execution. One
must observe that the Dynamic topology presents a balanced behavior between the
two static approaches (Global and Ring).

3.4 R-value

As described in Section 2.2, the R-value represents a relation between important
eigenvalues. Figure 4 presents the behavior of R-value of the Influence graph as a
function of the number of iterations for the three considered topologies. A low R-
value means that λ1 is not detached from the rest of the spectrum and it can be seen
as a consequence of a periodical structure [7].
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Iterations
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Global topology

Fig. 4 R-value of the Influence matrix for Dynamic, Ring and Global Topologies.

Because of the star-like behavior of influence graph for the Global topology, its
R-value is constant and presents the maximum possible value (1), since the extremal
eigenvalues λ1 and λN are opposites.

Both the Ring and Dynamic topologies present small R-values, as they produce
influence graphs that features quite periodical structures. Again, the Dynamic topol-
ogy presented a balanced behavior.
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3.5 The Density Spectrum

The spectral density has the capacity to represent the frequency of the eigenval-
ues. Therefore, it is interesting to evaluate the characteristics of the topologies as a
function of the number of iterations.

As the Ring and Global topologies present a well known behavior in terms of
connectivity and convergence, we first evaluated the evolution of the spectral den-
sity of the influence graph as a function of the number of iterations for these two
topologies. The results for the iterations 100, 400, 800 and 1200 are depicted in Fig-
ure 5. One can observe that the Ring topology presents a bi-modal shape, while the
Global topology presents a perfect uni-modal shape. Besides, the shapes are very
well defined and do not vary along the iterations.

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

(
)

100th iteration
400th iteration
800th iteration

1200th iteration

(a) Ring topology

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

(
)

100th iteration
400th iteration
800th iteration

1200th iteration

(b) Global topology

Fig. 5 Density spectrum of the swarm influence graph for the statical topologies.

After that, we evaluated the Dynamic topology. Figure 6 shows two different tri-
als of the PSO with the dynamic topology (Run #1 and Run #2). As can be observed,
the results for these two independent runs were quite different. In Run #1, the al-
gorithm converged, while in the Run #2 the algorithm got stuck in a local minima.
Figure 7 shows the spectral density of the evolution of the influence graph for these
two runs for the iterations 100, 400, 800 and 1200. In Run #2, the swarm proba-
bly got stuck in a local minima because the topology presented a Global behavior
at the beginning of the execution, i.e. the shape of the spectral density is perfectly
uni-modal around iteration number 100.
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Fig. 6 Two independent runs of the PSO algorithm with the Dynamic topology.
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Fig. 7 Density spectrum of the swarm influence graph in different algorithm executions.

3.6 Pkfailures Threshold Impact

In order to show that we can use our methodology to carry out deeper analyses, we
studied the influence of Pkfailures, which plays a important role in the performance
of the Dynamic topology. In general, if Pkfailures has a low value, the particles
will easily try to reconnect. Otherwise, particles will tend to maintain the current
topology. One must observe that this value also has an impact on the spectral density
of the influence graph.

Figure 8(a) shows the fitness evolution through iterations for Pkfailures equal to
1, 5 and 50. Figure 8 depicts the density spectra for the three cases. One can observe
that in all cases the spectral densities present a combination of the uni-modal and bi-
modal curves. The fitness obtained for Pkfailures = 1 was not satisfactory because,
in this case, the topology changes a lot and it diminishes the convergence capability.

4 Conclusions and Future Works

We proposed in this paper a set of tools based on some Network Science metrics
to assess the information flow on the Particle Swarm Optimization algorithms. We
observed that it is necessary to assess the influence graph, instead of the topology
itself in order to evaluate only the flow of useful information. The tools link the
structure features of the influence graph to algebraic quantities, that may be used for
further analysis in order to understand the swarm behavior.

We have shown that the swarm with a Dynamic topology has a behavior that
is between the two most used static approaches. Moreover, the simulation results
indicate that the stagnation can be foreseen by analyzing the density spectrum along
the iterations.
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(c) Pkfailures threshold = 5
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(d) Pkfailures threshold = 50

Fig. 8 Fitness evolution and density spectrum of the swarm influence graph with different
Pkfailures thresholds.

As future works, we intend to use these tools to design high performance dy-
namic topologies for PSOs by assessing the information flow within the swarm. We
also aim to develop variations of the swarm influence graph to recognize different
aspects of the swarm communication.
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